897 resultados para Energy consumption survey


Relevância:

90.00% 90.00%

Publicador:

Resumo:

Part 7: Cyber-Physical Systems

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Your energy connection is a South Carolina Energy Office publication on topics related to energy conservation and renewable energy in the state.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Your energy connection is a South Carolina Energy Office publication on topics related to energy conservation and renewable energy in the state.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Your energy connection is a South Carolina Energy Office publication on topics related to energy conservation and renewable energy in the state.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

The European program HORIZON2020 aims to have 20% of electricity produced by renewable sources. The building sector represents 40% of the European Union energy consumption. Reducing energy consumption in buildings is therefore a priority for energy efficiency. The present investigation explores the most adequate roof shapes compatible with the placement of different types of small wind energy generators on high-rise buildings for urban wind energy exploitation. The wind flow around traditional state-of-the-art roof shapes is considered. In addition, the influence of the roof edge on the wind flow on high-rise buildings is analyzed. These geometries are investigated, both qualitatively and quantitatively, and the turbulence intensity threshold for horizontal axis wind turbines is considered. The most adequate shapes for wind energy exploitation are identified, studying vertical profiles of velocity, turbulent kinetic energy and turbulence intensity. Curved shapes are the most interesting building roof shapes from the wind energy exploitation point of view, leading to the highest speed-up and the lowest turbulence intensity.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Dissertação (mestrado)—Universidade de Brasília, Faculdade de Tecnologia, Departamento de Engenharia Mecânica, 2016.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Hardware vendors make an important effort creating low-power CPUs that keep battery duration and durability above acceptable levels. In order to achieve this goal and provide good performance-energy for a wide variety of applications, ARM designed the big.LITTLE architecture. This heterogeneous multi-core architecture features two different types of cores: big cores oriented to performance and little cores, slower and aimed to save energy consumption. As all the cores have access to the same memory, multi-threaded applications must resort to some mutual exclusion mechanism to coordinate the access to shared data by the concurrent threads. Transactional Memory (TM) represents an optimistic approach for shared-memory synchronization. To take full advantage of the features offered by software TM, but also benefit from the characteristics of the heterogeneous big.LITTLE architectures, our focus is to propose TM solutions that take into account the power/performance requirements of the application and what it is offered by the architecture. In order to understand the current state-of-the-art and obtain useful information for future power-aware software TM solutions, we have performed an analysis of a popular TM library running on top of an ARM big.LITTLE processor. Experiments show, in general, better scalability for the LITTLE cores for most of the applications except for one, which requires the computing performance that the big cores offer.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

The need for efficient, sustainable, and planned utilization of resources is ever more critical. In the U.S. alone, buildings consume 34.8 Quadrillion (1015) BTU of energy annually at a cost of $1.4 Trillion. Of this energy 58% is utilized for heating and air conditioning. Several building energy analysis tools have been developed to assess energy demands and lifecycle energy costs in buildings. Such analyses are also essential for an efficient HVAC design that overcomes the pitfalls of an under/over-designed system. DOE-2 is among the most widely known full building energy analysis models. It also constitutes the simulation engine of other prominent software such as eQUEST, EnergyPro, PowerDOE. Therefore, it is essential that DOE-2 energy simulations be characterized by high accuracy. Infiltration is an uncontrolled process through which outside air leaks into a building. Studies have estimated infiltration to account for up to 50% of a building’s energy demand. This, considered alongside the annual cost of buildings energy consumption, reveals the costs of air infiltration. It also stresses the need that prominent building energy simulation engines accurately account for its impact. In this research the relative accuracy of current air infiltration calculation methods is evaluated against an intricate Multiphysics Hygrothermal CFD building envelope analysis. The full-scale CFD analysis is based on a meticulous representation of cracking in building envelopes and on real-life conditions. The research found that even the most advanced current infiltration methods, including in DOE-2, are at up to 96.13% relative error versus CFD analysis. An Enhanced Model for Combined Heat and Air Infiltration Simulation was developed. The model resulted in 91.6% improvement in relative accuracy over current models. It reduces error versus CFD analysis to less than 4.5% while requiring less than 1% of the time required for such a complex hygrothermal analysis. The algorithm used in our model was demonstrated to be easy to integrate into DOE-2 and other engines as a standalone method for evaluating infiltration heat loads. This will vastly increase the accuracy of such simulation engines while maintaining their speed and ease of use characteristics that make them very widely used in building design.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Expected damages of environmental risks depend both on their intensities and probabilities. There is very little control over probabilities of climate related disasters such as hurricanes. Therefore, researchers of social science are interested identifying preparation and mitigation measures that build human resilience to disasters and avoid serious loss. Conversely, environmental degradation, which is a process through which the natural environment is compromised in some way, has been accelerated by human activities. As scientists are finding effective ways on how to prevent and reduce pollution, the society often fails to adopt these effective preventive methods. Researchers of psychological and contextual characterization offer specific lessons for policy interventions that encourage human efforts to reduce pollution. This dissertation addresses four discussions of effective policy regimes encouraging pro-environmental preference in consumption and production, and promoting risk mitigation behavior in the face of natural hazards. The first essay describes how the speed of adoption of environment friendly technologies is driven largely by consumers’ preferences and their learning dynamics rather than producers’ choice. The second essay is an empirical analysis of a choice experiment to understand preferences for energy efficient investments. The empirical analysis suggests that subjects tend to increase energy efficient investment when they pay a pollution tax proportional to the total expenditure on energy consumption. However, investments in energy efficiency seem to be crowded out when subjects have the option to buy health insurance to cover pollution related health risks. In context of hurricane risk mitigation and in evidence of recently adopted My Safe Florida Home (MSFH) program by the State of Florida, the third essay shows that households with home insurance, prior experience with damages, and with a higher sense of vulnerability to be affected by hurricanes are more likely to allow home inspection to seek mitigation information. The fourth essay evaluates the impact of utility disruption on household well being based on the responses of a household-level phone survey in the wake of hurricane Wilma. Findings highlight the need for significant investment to enhance the capacity of rapid utility restoration after a hurricane event in the context of South Florida.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

18 months embargo on the thesis and check appendix for copy right materials

Relevância:

90.00% 90.00%

Publicador:

Resumo:

In this paper, dynamic simulation was used to compare the energy performance of three innovativeHVAC systems: (A) mechanical ventilation with heat recovery (MVHR) and micro heat pump, (B) exhaustventilation with exhaust air-to-water heat pump and ventilation radiators, and (C) exhaust ventilationwith air-to-water heat pump and ventilation radiators, to a reference system: (D) exhaust ventilation withair-to-water heat pump and panel radiators. System A was modelled in MATLAB Simulink and systems Band C in TRNSYS 17. The reference system was modelled in both tools, for comparison between the two.All systems were tested with a model of a renovated single family house for varying U-values, climates,infiltration and ventilation rates.It was found that A was the best system for lower heating demand, while for higher heating demandsystem B would be preferable. System C was better than the reference system, but not as good as A or B.The difference in energy consumption of the reference system was less than 2 kWh/(m2a) betweenSimulink and TRNSYS. This could be explained by the different ways of handling solar gains, but also bythe fact that the TRNSYS systems supplied slightly more than the ideal heating demand.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

The South Carolina General Assembly passed legislation in early June 2008 requiring all state agencies to develop energy conservation plans to reduce their energy consumption by one percent per year during fiscal years 2009-2013 and by a total of a 20 percent reduction in energy use by 2020. This legislation requires that each of these entities develop an energy conservation plan that addresses how it will meet energy use reduction goals and submit it to SCEO. This annual report reports the statewide progress in meeting the energy use reduction goals.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Nowadays, the spreading of the air pollution crisis enhanced by greenhouse gases emission is leading to the worsening of the global warming. In this context, the transportation sector plays a vital role, since it is responsible for a large part of carbon dioxide production. In order to address these issues, the present thesis deals with the development of advanced control strategies for the energy efficiency optimization of plug-in hybrid electric vehicles (PHEVs), supported by the prediction of future working conditions of the powertrain. In particular, a Dynamic Programming algorithm has been developed for the combined optimization of vehicle energy and battery thermal management. At this aim, the battery temperature and the battery cooling circuit control signal have been considered as an additional state and control variables, respectively. Moreover, an adaptive equivalent consumption minimization strategy (A-ECMS) has been modified to handle zero-emission zones, where engine propulsion is not allowed. Navigation data represent an essential element in the achievement of these tasks. With this aim, a novel simulation and testing environment has been developed during the PhD research activity, as an effective tool to retrieve routing information from map service providers via vehicle-to-everything connectivity. Comparisons between the developed and the reference strategies are made, as well, in order to assess their impact on the vehicle energy consumption. All the activities presented in this doctoral dissertation have been carried out at the Green Mobility Research Lab} (GMRL), a research center resulting from the partnership between the University of Bologna and FEV Italia s.r.l., which represents the industrial partner of the research project.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

This PhD work arises from the necessity to give a contribution to the energy saving field, regarding automotive applications. The aim was to produce a multidisciplinary work to show how much important is to consider different aspects of an electric car realization: from innovative materials to cutting-edge battery thermal management systems (BTMSs), also dealing with the life cycle assessment (LCA) of the battery packs (BPs). Regarding the materials, it has been chosen to focus on carbon fiber composites as their use allows realizing light products with great mechanical properties. Processes and methods to produce carbon fiber goods have been analysed with a special attention on the university solar car Emilia 4. The work proceeds dealing with the common BTMSs on the market (air-cooled, cooling plates, heat pipes) and then it deepens some of the most innovative systems such as the PCM-based BTMSs after a previous experimental campaign to characterize the PCMs. After that, a complex experimental campaign regarding the PCM-based BTMSs has been carried on, considering both uninsulated and insulated systems. About the first category the tested systems have been pure PCM-based and copper-foam-loaded-PCM-based BTMSs; the insulated tested systems have been pure PCM-based and copper-foam-loaded-PCM-based BTMSs and both of these systems equipped with a liquid cooling circuit. The choice of lighter building materials and the optimization of the BTMS are strategies which helps in reducing the energy consumption, considering both the energy required by the car to move and the BP state of health (SOH). Focusing on this last factor, a clear explanation regarding the importance of taking care about the SOH is given by the analysis of a BP production energy consumption. This is why a final dissertation about the life cycle assessment (LCA) of a BP unit has been presented in this thesis.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

The continuous growth of global population brings an exponential increase on energy consumption and greenhouse gas emission in the atmosphere contributing to the increase of the planet temperature. Therefore, it is mandatory to adopt renewable energy production systems like photovoltaic or wind power: unfortunately, the main limit of these technologies is the natural intermittence of the energy sources that limits their applicability. The key enabling technology for a widespread usage of clean power sources are electrochemical energy storage systems, most commonly known as batteries. Batteries will enable the storage of energy during overproduction period and the release during low production period stabilizing the power outcome, allowing the connection to the main grid and increasing the applicability of renewable energy sources. Despite the high number of benefits that the widespread use of batteries will bring, starting from the reduction of CO2 emitted in the atmosphere, it is necessary also to take care of the environmental impact of processes and materials used for the production of electrochemical storage systems. In addition, there are many different battery systems, with different chemistries and designs that require specific strategies. Nowadays, the most part of the materials and chemicals used for battery production are toxic for humans and the environment. For this reason, this Ph.D. thesis addresses the challenging scope of lowering the environmental impact of manufacturing processes of different electrochemical energy storage systems using natural derived or low carbon footprint materials while increasing the performances with respect to commercial devices. The activities carried out during my Ph.D. cover a high number of different electrochemical storage systems involving a wide range of electrochemical processes from capacitive to faradic. New materials, different production processes and new battery design, all in view of sustainability and low environmental impact, increased the innovative and challenging aspects of this work.