838 resultados para Energy Harvesting, Convertitori di potenza, Maximum Power Point Tracking, Applicazioni low power
Resumo:
The ability of Static Var Compensators (SVCs) to rapidly and continuously control reactive power in response to changing system conditions can result in the improvement of system stability and also increase the power transfer in the transmission system. This paper concerns the application of strategically located SVCs to enhance the transient stability limits and the direct evaluation of the effect of these SVCs on transient stability using a Structure Preserving Energy Function (SPEF). The SVC control system can be modelled from the steady- state control characteristic to accurately simulate its effect on transient stability. Treating the SVC as a voltage-dependent reactive power load leads to the derivation of a path-independent SPEF for the SVC. Case studies on a 10-machine test system using multiple SVCs illustrate the effects of SVCs on transient stability and its accurate prediction.
Resumo:
Carbon-supported Pt-Au (Pt-Au/C) catalyst is prepared separately by impregnation, colloidal and micro-emulsion methods, and characterized by physical and electrochemical methods. Highest catalytic activity towards oxygen-reduction reaction (ORR) is exhibited by Pt-Au/C catalyst prepared by colloidal method. The optimum atomic ratio of Pt to Au in Pt-Au/C catalyst prepared by colloidal method is determined using linear-sweep and cyclic voltammetry in conjunction with cell-polarization studies. Among 3:1, 2:1 and 1:1 Pt-Au/C catalysts, (3:1) Pt-Au/C exhibits maximum electrochemical activity towards ORR. Powder X-ray diffraction pattern and transmission electron micrograph suggest Pt-Au alloy nanoparticles to be well dispersed onto the carbon-support. Energy dispersive X-ray analysis and inductively coupled plasma-optical emission spectroscopy data suggest that the atomic ratios of the alloying elements match well with the expected values. A polymer electrolyte fuel cell (PEFC) operating at 0 center dot 6 V with (3:1) Pt-Au/C cathode delivers a maximum power-density of 0 center dot 65 W/cm (2) in relation to 0 center dot 53 W/cm (2) delivered by the PEFC with pristine carbon-supported Pt cathode.
INTACTE: An Interconnect Area, Delay, and Energy Estimation Tool for Microarchitectural Explorations
Resumo:
Prior work on modeling interconnects has focused on optimizing the wire and repeater design for trading off energy and delay, and is largely based on low level circuit parameters. Hence these models are hard to use directly to make high level microarchitectural trade-offs in the initial exploration phase of a design. In this paper, we propose INTACTE, a tool that can be used by architects toget reasonably accurate interconnect area, delay, and power estimates based on a few architecture level parameters for the interconnect such as length, width (in number of bits), frequency, and latency for a specified technology and voltage. The tool uses well known models of interconnect delay and energy taking into account the wire pitch, repeater size, and spacing for a range of voltages and technologies.It then solves an optimization problem of finding the lowest energy interconnect design in terms of the low level circuit parameters, which meets the architectural constraintsgiven as inputs. In addition, the tool also provides the area, energy, and delay for a range of supply voltages and degrees of pipelining, which can be used for micro-architectural exploration of a chip. The delay and energy models used by the tool have been validated against low level circuit simulations. We discuss several potential applications of the tool and present an example of optimizing interconnect design in the context of clustered VLIW architectures. Copyright 2007 ACM.
Resumo:
We study the problem of optimal sequential (''as-you-go'') deployment of wireless relay nodes, as a person walks along a line of random length (with a known distribution). The objective is to create an impromptu multihop wireless network for connecting a packet source to be placed at the end of the line with a sink node located at the starting point, to operate in the light traffic regime. In walking from the sink towards the source, at every step, measurements yield the transmit powers required to establish links to one or more previously placed nodes. Based on these measurements, at every step, a decision is made to place a relay node, the overall system objective being to minimize a linear combination of the expected sum power (or the expected maximum power) required to deliver a packet from the source to the sink node and the expected number of relay nodes deployed. For each of these two objectives, two different relay selection strategies are considered: (i) each relay communicates with the sink via its immediate previous relay, (ii) the communication path can skip some of the deployed relays. With appropriate modeling assumptions, we formulate each of these problems as a Markov decision process (MDP). We provide the optimal policy structures for all these cases, and provide illustrations of the policies and their performance, via numerical results, for some typical parameters.
Resumo:
Single crystalline zinc oxide (ZnO) nanorod array has been used for the fabrication of CdSe/CdS/PbS/ZnO quantum dot sensitized solar cell (QDSSC). The ZnO nanorod array photoanodes are sensitized with consecutive layer of PbS, CdS and CdSe quantum dots by employing simple successive ion layer adsorption and reaction (SILAR) and chemical bath deposition (CBD) techniques. The performances of the QDSSCs are examined in detail using polysulfide electrolyte with copper sulfide (CuS) counter electrode. The combination of two successive layers of PbS with CdSe/CdS/ZnO shows an improved short circuit current density (12.223 mA cm(-2)) with a maximum power to conversion efficiency of 2.352% under 1 sun illumination. This enhancement is mainly attributed due to the better light harvesting ability of the PbS quantum dots and make large accumulation of photo-injected electrons in the conduction band of ZnO, and CdSe/CdS layers lower the recombination of photo-injected electrons with the electrolyte, these are well evidenced with the photovoltaic studies and electrochemical impedance spectroscopy. (C) 2013 Elsevier B.V. All rights reserved.
Resumo:
Remote sensing of physiological parameters could be a cost effective approach to improving health care, and low-power sensors are essential for remote sensing because these sensors are often energy constrained. This paper presents a power optimized photoplethysmographic sensor interface to sense arterial oxygen saturation, a technique to dynamically trade off SNR for power during sensor operation, and a simple algorithm to choose when to acquire samples in photoplethysmography. A prototype of the proposed pulse oximeter built using commercial-off-the-shelf (COTS) components is tested on 10 adults. The dynamic adaptation techniques described reduce power consumption considerably compared to our reference implementation, and our approach is competitive to state-of-the-art implementations. The techniques presented in this paper may be applied to low-power sensor interface designs where acquiring samples is expensive in terms of power as epitomized by pulse oximetry.
Resumo:
We consider the problem of finding optimal energy sharing policies that maximize the network performance of a system comprising of multiple sensor nodes and a single energy harvesting (EH) source. Sensor nodes periodically sense the random field and generate data, which is stored in the corresponding data queues. The EH source harnesses energy from ambient energy sources and the generated energy is stored in an energy buffer. Sensor nodes receive energy for data transmission from the EH source. The EH source has to efficiently share the stored energy among the nodes to minimize the long-run average delay in data transmission. We formulate the problem of energy sharing between the nodes in the framework of average cost infinite-horizon Markov decision processes (MDPs). We develop efficient energy sharing algorithms, namely Q-learning algorithm with exploration mechanisms based on the epsilon-greedy method as well as upper confidence bound (UCB). We extend these algorithms by incorporating state and action space aggregation to tackle state-action space explosion in the MDP. We also develop a cross entropy based method that incorporates policy parameterization to find near optimal energy sharing policies. Through simulations, we show that our algorithms yield energy sharing policies that outperform the heuristic greedy method.
Resumo:
The relative energies of triangular face sharing condensed macro polyhedral carboranes: CB20H18 and C2B19H18+ derived from mono- and di-substitution of carbons in (4) B21H18- is calculated at B3LYP/6-31G* level. The relative energies, H center dot center dot center dot H non-bonding distances, NICS values, topological charge analysis and orbital overlap compatibility connotes the face sharing condensed macro polyhedral mono-carboranes, 8 (4-CB20H18) to be the lowest energy isomer. The di-carba- derivative, (36) 4,4'a-C2B19H18+ with carbons substituted in a different B-12 cage in (4) B21H18- in anti-fashion is the most stable isomer among 28 possibilities. This structure has less non-bonding H center dot center dot center dot H interaction and is in agreement with orbital-overlap compatibility, and these two have the pivotal role in deciding the stability of these clusters. An estimate of the inherent stability of these carboranes is made using near-isodesmic equations which show that CB20H18 (8) is in the realm of the possible. (C) 2015 Elsevier B.V. All rights reserved.
Resumo:
During its 1990 operation, 2 large RF systems were available on JET. The Ion Cyclotron Resonance Heating (ICRH) system was equipped with new beryllium screens and with feedback matching systems. Specific impurities generated by ICRH were reduced to negligible levels even in the most stringent H-mode conditions. A maximum power of 22 MW was coupled to L-mode plasmas. High quality H-modes (tau-E greater-than-or-equal-to 2.5 tau-EG) were achieved using dipole phasing. A new high confinement mode was discovered. It combines the properties of the H-mode regime to the low central diffusivities obtained by pellet injection. A value of n(d) tau-E T(i) = 7.8 x 10(20) m-3 s keV was obtained in this mode with T(e) approximately T(i) approximately 11 keV. In the L-mode regime, a regime, a record (140 kW) D-He-3 fusion power was generated with 10 - 14 MW of ICRH at the He-3 cyclotron frequency. Experiments were performed with the prototype launcher of the Lower Hybrid Current Drive (LHCD) systems with coupled power up to 1.6 MW with current drive efficiencies up to < n(e) > R I(CD)/P = 0.4 x 10(20) m-2 A/W. Fast electrons are driven by LHCD to tail temperatures of 100 keV with a hollow radial profile. Paradoxically, LHCD induces central heating particularly in combination with ICRH. Finally we present the first observations of the synergistic acceleration of fast electrons by Transit Time Magnetic Pumping (TTMP) (from ICRH) and Electron Landau Damping (ELD) (from LHCD). The synergism generates TTMP current drive even without phasing the ICRH antennae.
Resumo:
<p>The propagation of the fast magnetosonic wave in a tokamak plasma has been investigated at low power, between 10 and 300 watts, as a prelude to future heating experiments.</p> <p>The attention of the experiments has been focused on the understanding of the coupling between a loop antenna and a plasma-filled cavity. Special emphasis has been given to the measurement of the complex loading impedance of the plasma. The importance of this measurement is that once the complex loading impedance of the plasma is known, a matching network can be designed so that the r.f. generator impedance can be matched to one of the cavity modes, thus delivering maximum power to the plasma. For future heating experiments it will be essential to be able to match the generator impedance to a cavity mode in order to couple the r.f. energy efficiently to the plasma.</p> <p>As a consequence of the complex impedance measurements, it was discovered that the designs of the transmitting antenna and the impedance matching network are both crucial. The losses in the antenna and the matching network must be kept below the plasma loading in order to be able to detect the complex plasma loading impedance. This is even more important in future heating experiments, because the fundamental basis for efficient heating before any other consideration is to deliver more energy into the plasma than is dissipated in the antenna system.</p> <p>The characteristics of the magnetosonic cavity modes are confirmed by three different methods. First, the cavity modes are observed as voltage maxima at the output of a six-turn receiving probe. Second, they also appear as maxima in the input resistance of the transmitting antenna. Finally, when the real and imaginary parts of the measured complex input impedance of the antenna are plotted in the complex impedance plane, the resulting curves are approximately circles, indicating a resonance phenomenon. </p> <p>The observed plasma loading resistances at the various cavity modes are as high as 3 to 4 times the basic antenna resistance (~ .4 Ω). The estimated cavity Q’s were between 400 and 700. This means that efficient energy coupling into the tokamak and low losses in the antenna system are possible. </p>
Resumo:
Analyses of photovoltaic power generation based on Lyapunov's theorems are presented. The characteristics of the photovoltaic module and the power conditioning unit are analyzed in order to establish energy functions that assess the stability of solutions and define safe regions of operation. Furthermore, it is shown that grid-connected photovoltaic modules driven at maximum power may become unstable under normal grid transients. In such cases, stability can be maintained by allowing an operational margin defined as the energy difference between the stable and the unstable solutions of the system. Simulations show that modules cope well with grid transients when a sufficiently large margin is used.
Resumo:
The Brushless Doubly-Fed Machine (BDFM) is a brushless electrical generator which allows variable speed operation with a power converter rated at only a fraction of the machine rating. This paper details an example implementation of the BDFM in a medium-scale wind turbine. Details of a simplified design procedure based on electrical and magnetic loadings are given along with the results of tests on the manufactured machine. These show that a BDFM of the scale works as expected but that the 4/8 BDFM chosen was slower and thus larger than the turbine's original induction machine. The implementation of the turbine system is discussed, including the vector-based control scheme that ensures the BDFM operates at a demanded speed and the Maximum Power Point Tracking (MPPT) scheme that selects the rotor speed that extracts the most power from the incident wind conditions.
Resumo:
Large digital chips use a significant amount of energy to distribute a multi-GHz clock. By discharging the clock network to ground every cycle, the energy stored in this large capacitor is wasted. Instead, the energy can be recovered using an on-chip DC-DC converter. This paper investigates the integration of two DC-DC converter topologies, boost and buck-boost, with a high-speed clock driver. The high operating frequency significantly shrinks the required size of the L and C components so they can be placed on-chip; typical converters place them off-chip. The clock driver and DC-DC converter are able to share the entire tapered buffer chain, including the widest drive transistors in the final stage. To achieve voltage regulation, the clock duty cycle must be modulated; implying only single-edge-triggered flops should be used. However, this minor drawback is eclipsed by the benefits: by recovering energy from the clock, the output power can actually exceed the additional power needed to operate the converter circuitry, resulting in an effective efficiency greater than 100%. Furthermore, the converter output can be used to operate additional power-saving features like low-voltage islands or body bias voltages. ©2008 IEEE.
Resumo:
An electronic load interface (ELI) for improving the operational margin of a photovoltaic (PV) dual-converter system under dynamic conditions is presented. The ELI - based on a modified buck-boost converter - interfaces the output of the converters and the load system. It improves the operational margin of the PV dual-converter system by extending the conditions under which the dual-converter system operates at the maximum power point. The ELI is activated as and when needed, so as minimise system losses. By employing the ELI, utilisation and efficiency of a PV dual-converter system increases. In general, the concept of the ELI can be applied to multi-converter PV systems - such as multi-converter inverters, and multi-converter DC-DC converter systems - for performance and efficiency improvement. © 2013 The Institution of Engineering and Technology.
Resumo:
A novel silicon-on-insulator thermo-optic variable optical attenuator with isolated grooves based on a multimode interference coupler principle is fabricated by the inductive coupled plasma etching technology. The maximum fibre-to-fibre insertion loss is lower than 2.2 dB, the dynamic attenuation range is from 0 to 30 dB in the wavelength range 1500-1600 nm, and the maximum power consumption is only 140 mW. The response frequency of the fabricated variable optical attenuator is about 30 kHz. Compared to the variable optical attenuator without isolated grooves, the maximum power consumption decreases more than 220 mW, and the response frequency rises are more than 20 kHz.