927 resultados para Endocrine-disrupting chemicals
Resumo:
Humans restrain self-interest with moral and social values. They are the only species known to exhibit reciprocal fairness, which implies the punishment of other individuals' unfair behaviors, even if it hurts the punisher's economic self-interest. Reciprocal fairness has been demonstrated in the Ultimatum Game, where players often reject their bargaining partner's unfair offers. Despite progress in recent years, however, little is known about how the human brain limits the impact of selfish motives and implements fair behavior. Here we show that disruption of the right, but not the left, dorsolateral prefrontal cortex (DLPFC) by low-frequency repetitive transcranial magnetic stimulation substantially reduces subjects' willingness to reject their partners' intentionally unfair offers, which suggests that subjects are less able to resist the economic temptation to accept these offers. Importantly, however, subjects still judge such offers as very unfair, which indicates that the right DLPFC plays a key role in the implementation of fairness-related behaviors.
Resumo:
The aim of the present study was to investigate the effects of the androgenic endocrine disruptor 17β-trenbolone on the sexual development of zebrafish (Danio rerio) with special emphasis on the question of whether adverse outcomes of developmental exposure are reversible or persistent. An exposure scenario including a recovery phase was chosen to assess the potential reversibility of androgenic effects. Zebrafish were exposed to environmentally relevant concentrations of 17β-trenbolone (1 ng/L-30 ng/L) from fertilization until completion of gonad sexual differentiation (60 d posthatch). Thereafter, exposure was either followed by 40 d of recovery in clean water or continued until 100 d posthatch, the age when zebrafish start being able to reproduce. Fish exposed for 100 d to 10 ng/L or 30 ng/L 17β-trenbolone were masculinized at different biological effect levels, as evidenced from a concentration-dependent shift of the sex ratio toward males as well as a significantly increased maturity of testes. Gonad morphological masculinization occurred in parallel with decreased vitellogenin concentrations in both sexes. Changes of brain aromatase (cyp19b) mRNA expression showed no consistent trend with respect to either exposure duration or concentration. Gonad morphological masculinization as well as the decrease of vitellogenin persisted after depuration over 40 d in clean water. This lack of recovery suggests that androgenic effects on sexual development of zebrafish are irreversible.
Resumo:
The aim of the present study was to investigate the persistence of the feminizing effects of discontinued 17α-ethinylestradiol (EE2) exposure on zebrafish (Danio rerio). An exposure scenario covering the sensitive phase of sexual differentiation, as well as final gonad maturation was chosen to examine the estrogenic effects on sexual development of zebrafish. Two exposure scenarios were compared: continuous exposure to environmentally relevant concentrations (0.1-10 ng/L EE2) up to 100 days post-hatch (dph) and developmental exposure up to 60 dph, followed by 40 days of depuration in clean water. The persistence of effects was investigated at different biological organization levels from mRNA to population-relevant endpoints to cover a broad range of important parameters. EE2 had a strong feminizing and inhibiting effect on the sexual development of zebrafish. Brain aromatase (cyp19b) mRNA expression showed no clear response, but vitellogenin levels were significantly elevated, gonad maturation and body growth were inhibited in both genders, and sex ratios were skewed towards females and undifferentiated individuals. To a large extent, all of these effects were reversed after 40 days of recovery, leading to the conclusion that exposure to the estrogen EE2 results in very strong, but reversible underdevelopment and feminization of zebrafish. The present study is the first to show this reversibility at different levels of organization, which gives better insight into the mechanistic basis of estrogenic effects in zebrafish.
Resumo:
Conventional risk assessments for crop protection chemicals compare the potential for causing toxicity (hazard identification) to anticipated exposure. New regulatory approaches have been proposed that would exclude exposure assessment and just focus on hazard identification based on endocrine disruption. This review comprises a critical analysis of hazard, focusing on the relative sensitivity of endocrine and non-endocrine endpoints, using a class of crop protection chemicals, the azole fungicides. These were selected because they are widely used on important crops (e.g. grains) and thereby can contact target and non-target plants and enter the food chain of humans and wildlife. Inhibition of lanosterol 14α-demethylase (CYP51) mediates the antifungal effect. Inhibition of other CYPs, such as aromatase (CYP19), can lead to numerous toxicological effects, which are also evident from high dose human exposures to therapeutic azoles. Because of its widespread use and substantial database, epoxiconazole was selected as a representative azole fungicide. Our critical analysis concluded that anticipated human exposure to epoxiconazole would yield a margin of safety of at least three orders of magnitude for reproductive effects observed in laboratory rodent studies that are postulated to be endocrine-driven (i.e. fetal resorptions). The most sensitive ecological species is the aquatic plant Lemna (duckweed), for which the margin of safety is less protective than for human health. For humans and wildlife, endocrine disruption is not the most sensitive endpoint. It is concluded that conventional risk assessment, considering anticipated exposure levels, will be protective of both human and ecological health. Although the toxic mechanisms of other azole compounds may be similar, large differences in potency will require a case-by-case risk assessment.
Resumo:
Endokrine Disruptoren sind Umweltsubstanzen, die in das Hormonsystem von Organismen eingreifen, und dadurch zu schädlichen Wirkungen führen. Sie entfalten ihre Wirkung entweder, indem sie den Hormonstoffwechsel stören oder indem sie die Wirkung von Hormonen imitieren. Eine wichtige Gruppe von endokrinen Disruptoren in der aquatischen Umwelt sind Stoffe, die an Östrogenrezeptoren binden und dadurch wie das weibliche Sexualhormon, 17β-Östradiol wirken. Zu den Umweltöstrogenen gehören sowohl synthetische Chemikalien wie auch natürliche Substanzen. Sowohl Laborversuche wie Felduntersuchungen an Fischen haben gezeigt, dass bereits sehr niedrige Konzentrationen von Umweltöstrogenen in Gewässern in der Lage sind, Störungen des Hormonsystems auszulösen. Environmental estrogens Endocrine disrupters are environmental substances which interfere with the hormone system of organisms and thereby induce adverse effects. They exert their biological activity either by disrupting hormone metabolism or by imitating the biological action of the endogenous hormones. In the aquatic environment, an important group of endocrine disrupters is represented by the estrogen-active compounds, which mimic the female sex hormone, 17β-estradiol. Both laboratory experiments and field studies on fishes have demonstrated that already very low concentrations of environmental estrogens are able to induce disturbances in the hormone system and hormone-regulated processes of fishes.
Resumo:
A large body of research demonstrated that participants preferably look back to the encoding location when retrieving visual information from memory. However, the role of this 'looking back to nothing' is still debated. The goal of the present study was to extend this line of research by examining whether an important area in the cortical representation of the oculomotor system, the frontal eye field (FEF), is involved in memory retrieval. To interfere with the activity of the FEF, we used inhibitory continuous theta burst stimulation (cTBS). Before stimulation was applied, participants encoded a complex scene and performed a short-term (immediately after encoding) or long-term (after 24 h) recall task, just after cTBS over the right FEF or sham stimulation. cTBS did not affect overall performance, but stimulation and statement type (object vs. location) interacted. cTBS over the right FEF tended to impair object recall sensitivity, whereas there was no effect on location recall sensitivity. These findings suggest that the FEF is involved in retrieving object information from scene memory, supporting the hypothesis that the oculomotor system contributes to memory recall.
Resumo:
Phthalates are industrial chemicals used primarily as plasticizers though they and are found in a myriad of consumer goods such as children's toys, food packaging, dental sealants, cosmetics, pharmaceuticals, perfumes, and building materials. US biomonitoring data show more than 75% of the population have exposure to mono-n-butyl phthalate (MBP), mono-ethyl phthalate (MEP), mono-(2-ethyl) hexyl phthalate (MEHP), and mono-benzyl phthalate (MBZP). Reproductive toxicity from phthalate exposure in animal models has raised concerns about similar effects on fertility in humans. This dissertation research focuses on phthalate exposures in the US population and investigates the plausibility of an exposure-response relationship between phthalates and endocrine hormones essential for ovulation among US women. The objective of this research is to determine the relationship between levels of gonadotropins, follicle stimulating hormone (FSH) and leutinizing hormone (LH), and urinary phthalate monoester metabolites: MBP, MEP, MEHP, MBZP among National Health and Nutrition Examination Survey (NHANES) 1999-2002 women aged 35 to 60 years. Using biomarker data from a one-third sub-sample of NHANES participants, log transformed serum FSH and serum LH, respectively were regressed on phthalates controlling for age, body mass index, smoking, and creatinine taking into consideration the complex survey design (n=385). Models were stratified by reproductive status: reproductive (n=185), menopause transition (n=49) and post-menopausal (n=125). A decrease in FSH associated with increasing MBzP (beta=-0.094, p<0.05) was observed for all participants but no statistical association between log FSH and MBP, MEP, or MEHP was seen. A decrease in LH (beta=-0.125, p<0.05) was also observed with increasing MBzP for all participants though there was no relationship between levels of LH and MBP, MEP, or MEHP. The observed associations between FSH, LH and MBzP did not persist when stratified by reproductive status. Thus, the present study shows a change in endocrine hormones related to ovulation with increasing urinary MBzP among a representative sample of US women from 1999-2002 though this observed exposure-response relationship does not remain after stratification by reproductive status. ^
Resumo:
Polybrominated diphenyl ethers (PBDEs) and phthalates are chemicals of concern because of high levels measured in people and the environment as well as the demonstrated toxicity in animal studies and limited epidemiological studies. Exposure to these chemicals has been associated with a range of toxicological outcomes, including developmental effects, behavioral changes, endocrine disruption, effects on sexual health, and cancer. Previous research has shown that both of these classes of chemicals contaminate food in the United States and worldwide. However, how large a role diet plays in exposure to these chemicals is currently unknown. To address this question, an exploratory analysis of data collected as part of the 2003-04 National Health and Nutrition Examination Survey (NHANES) was conducted. Associations between dietary intake (assessed by 24-hour dietary recalls) for a range of food types (meat, poultry, fish, and dairy) and levels PBDEs and phthalate metabolites were analyzed using multiple linear regression modeling. Levels of individual PBDE congeners 28, 47, 99, 100 as well as total PBDEs were found to be significantly associated with the consumption of poultry. Metabolites of di-(2-ethylhexyl) phthalate (DEHP) were found to be associated with the consumption of poultry, as well as with an increased consumption of fat of animal origin. These results, combined with results from previous studies, suggest that diet is an important route of intake for both PBDEs and phthalates. Further research needs to be conducted to determine the sources of food contamination with these toxic chemicals as well as to describe the levels of contamination of US food in a large, representative sample.^
Resumo:
The objective of this dissertation was to design and implement strategies for assessment of exposures to organic chemicals used in the production of a styrene-butadiene polymer at the Texas Plastics Company (TPC). Linear statistical retrospective exposure models, univariate and multivariate, were developed based on the validation of historical industrial hygiene monitoring data collected by industrial hygienists at TPC, and additional current industrial hygiene monitoring data collected for the purposes of this study. The current monitoring data served several purposes. First, it provided information on current exposure data, in the form of unbiased estimates of mean exposure to organic chemicals for each job title included. Second, it provided information on homogeneity of exposure within each job title, through the use of a carefully designed sampling scheme which addressed variability of exposure both between and within job titles. Third, it permitted the investigation of how well current exposure data can serve as an evaluation tool for retrospective exposure estimation. Finally, this dissertation investigated the simultaneous evaluation of exposure to several chemicals, as well as the use of values below detection limits in a multivariate linear statistical model of exposures. ^
Resumo:
Children who experience early pubertal development have an increased risk of developing cancer (breast, ovarian, and testicular), osteoporosis, insulin resistance, and obesity as adults. Early pubertal development has been associated with depression, aggressiveness, and increased sexual prowess. Possible explanations for the decline in age of pubertal onset include genetics, exposure to environmental toxins, better nutrition, and a reduction in childhood infections. In this study we (1) evaluated the association between 415 single nucleotide polymorphisms (SNPs) from hormonal pathways and early puberty, defined as menarche prior to age 12 in females and Tanner Stage 2 development prior to age 11 in males, and (2) measured endocrine hormone trajectories (estradiol, testosterone, and DHEAS) in relation to age, race, and Tanner Stage in a cohort of children from Project HeartBeat! At the end of the 4-year study, 193 females had onset of menarche and 121 males had pubertal staging at age 11. African American females had a younger mean age at menarche than Non-Hispanic White females. African American females and males had a lower mean age at each pubertal stage (1-5) than Non-Hispanic White females and males. African American females had higher mean BMI measures at each pubertal stage than Non-Hispanic White females. Of the 415 SNPs evaluated in females, 22 SNPs were associated with early menarche, when adjusted for race ( p<0.05), but none remained significant after adjusting for multiple testing by False Discovery Rate (p<0.00017). In males, 17 SNPs were associated with early pubertal development when adjusted for race (p<0.05), but none remained significant when adjusted for multiple testing (p<0.00017). ^ There were 4955 hormone measurements taken during the 4-year study period from 632 African American and Non-Hispanic White males and females. On average, African American females started and ended the pubertal process at a younger age than Non-Hispanic White females. The mean age of Tanner Stage 2 breast development in African American and Non-Hispanic White females was 9.7 (S.D.=0.8) and 10.2 (S.D.=1.1) years, respectively. There was a significant difference by race in mean age for each pubertal stage, except Tanner Stage 1 for pubic hair development. Both Estradiol and DHEAS levels in females varied significantly with age, but not by race. Estradiol and DHEAS levels increased from Tanner Stage 1 to Tanner Stage 5.^ African American males had a lower mean age at each Tanner Stage of development than Non-Hispanic White males. The mean age of Tanner Stage 2 genital development in African American and Non-Hispanic White males was 10.5 (S.D.=1.1) and 10.8 (S.D.=1.1) years, respectively, but this difference was not significant (p=0.11). Testosterone levels varied significantly with age and race. Non-Hispanic White males had higher levels of testosterone than African American males from Tanner Stage 1-4. Testosterone levels increased for both races from Tanner Stage 1 to Tanner Stage 5. Testosterone levels had the steepest increase from ages 11-15 for both races. DHEAS levels in males varied significantly with age, but not by race. DHEAS levels had the steepest increase from ages 14-17. ^ In conclusion, African American males and females experience pubertal onset at a younger age than Non-Hispanic White males and females, but in this study, we could not find a specific gene that explained the observed variation in age of pubertal onset. Future studies with larger study populations may provide a better understanding of the contribution of genes in early pubertal onset.^