992 resultados para Electroluminescent display systems
Resumo:
The Systems Theory Framework was developed to produce a metatheoretical framework through which the contribution of all theories to our understanding of career behaviour could be recognised. In addition it emphasises the individual as the site for the integration of theory and practice. Its utility has become more broadly acknowledged through its application to a range of cultural groups and settings, qualitative assessment processes, career counselling, and multicultural career counselling. For these reasons, the STF is a very valuable addition to the field of career theory. In viewing the field of career theory as a system, open to changes and developments from within itself and through constantly interrelating with other systems, the STF and this book is adding to the pattern of knowledge and relationships within the career field. The contents of this book will be integrated within the field as representative of a shift in understanding existing relationships within and between theories. In the same way, each reader will integrate the contents of the book within their existing views about the current state of career theory and within their current theory-practice relationship. This book should be required reading for anyone involved in career theory. It is also highly suitable as a text for an advanced career counselling or theory course.
Resumo:
To simulate cropping systems, crop models must not only give reliable predictions of yield across a wide range of environmental conditions, they must also quantify water and nutrient use well, so that the status of the soil at maturity is a good representation of the starting conditions for the next cropping sequence. To assess the suitability for this task a range of crop models, currently used in Australia, were tested. The models differed in their design objectives, complexity and structure and were (i) tested on diverse, independent data sets from a wide range of environments and (ii) model components were further evaluated with one detailed data set from a semi-arid environment. All models were coded into the cropping systems shell APSIM, which provides a common soil water and nitrogen balance. Crop development was input, thus differences between simulations were caused entirely by difference in simulating crop growth. Under nitrogen non-limiting conditions between 73 and 85% of the observed kernel yield variation across environments was explained by the models. This ranged from 51 to 77% under varying nitrogen supply. Water and nitrogen effects on leaf area index were predicted poorly by all models resulting in erroneous predictions of dry matter accumulation and water use. When measured light interception was used as input, most models improved in their prediction of dry matter and yield. This test highlighted a range of compensating errors in all modelling approaches. Time course and final amount of water extraction was simulated well by two models, while others left up to 25% of potentially available soil water in the profile. Kernel nitrogen percentage was predicted poorly by all models due to its sensitivity to small dry matter changes. Yield and dry matter could be estimated adequately for a range of environmental conditions using the general concepts of radiation use efficiency and transpiration efficiency. However, leaf area and kernel nitrogen dynamics need to be improved to achieve better estimates of water and nitrogen use if such models are to be use to evaluate cropping systems. (C) 1998 Elsevier Science B.V.
Resumo:
Previous work has identified several short-comings in the ability of four spring wheat and one barley model to simulate crop processes and resource utilization. This can have important implications when such models are used within systems models where final soil water and nitrogen conditions of one crop define the starting conditions of the following crop. In an attempt to overcome these limitations and to reconcile a range of modelling approaches, existing model components that worked demonstrably well were combined with new components for aspects where existing capabilities were inadequate. This resulted in the Integrated Wheat Model (I_WHEAT), which was developed as a module of the cropping systems model APSIM. To increase predictive capability of the model, process detail was reduced, where possible, by replacing groups of processes with conservative, biologically meaningful parameters. I_WHEAT does not contain a soil water or soil nitrogen balance. These are present as other modules of APSIM. In I_WHEAT, yield is simulated using a linear increase in harvest index whereby nitrogen or water limitations can lead to early termination of grainfilling and hence cessation of harvest index increase. Dry matter increase is calculated either from the amount of intercepted radiation and radiation conversion efficiency or from the amount of water transpired and transpiration efficiency, depending on the most limiting resource. Leaf area and tiller formation are calculated from thermal time and a cultivar specific phyllochron interval. Nitrogen limitation first reduces leaf area and then affects radiation conversion efficiency as it becomes more severe. Water or nitrogen limitations result in reduced leaf expansion, accelerated leaf senescence or tiller death. This reduces the radiation load on the crop canopy (i.e. demand for water) and can make nitrogen available for translocation to other organs. Sensitive feedbacks between light interception and dry matter accumulation are avoided by having environmental effects acting directly on leaf area development, rather than via biomass production. This makes the model more stable across environments without losing the interactions between the different external influences. When comparing model output with models tested previously using data from a wide range of agro-climatic conditions, yield and biomass predictions were equal to the best of those models, but improvements could be demonstrated for simulating leaf area dynamics in response to water and nitrogen supply, kernel nitrogen content, and total water and nitrogen use. I_WHEAT does not require calibration for any of the environments tested. Further model improvement should concentrate on improving phenology simulations, a more thorough derivation of coefficients to describe leaf area development and a better quantification of some processes related to nitrogen dynamics. (C) 1998 Elsevier Science B.V.
Resumo:
It is known that some Virtual Reality (VR) head-mounted displays (HMDs) can cause temporary deficits in binocular vision. On the other hand, the precise mechanism by which visual stress occurs is unclear. This paper is concerned with a potential source of visual stress that has not been previously considered with regard to VR systems: inappropriate vertical gaze angle. As vertical gaze angle is raised or lowered the 'effort' required of the binocular system also changes. The extent to which changes in vertical gaze angle alter the demands placed upon the vergence eye movement system was explored. The results suggested that visual stress may depend, in part, on vertical gaze angle. The proximity of the display screens within an HMD means that a VR headset should be in the correct vertical location for any individual user. This factor may explain some previous empirical results and has important implications for headset design. Fortuitously, a reasonably simple solution exists.
Resumo:
The modification of the statistical properties of vacuum fluctuations, via quadrature squeezing, can dramatically reduce the absorptive and dispersive properties of two-level atoms. We show that for some range of parameter values the system exhibits zero absorption accompanied by zero dispersion of the probe field. This complete transparency is attributed to the coherent population oscillations induced by the squeezed vacuum.
Resumo:
A simple theoretical framework is presented for bioassay studies using three component in vitro systems. An equilibrium model is used to derive equations useful for predicting changes in biological response after addition of hormone-binding-protein or as a consequence of increased hormone affinity. Sets of possible solutions for receptor occupancy and binding protein occupancy are found for typical values of receptor and binding protein affinity constants. Unique equilibrium solutions are dictated by the initial condition of total hormone concentration. According to the occupancy theory of drug action, increasing the affinity of a hormone for its receptor will result in a proportional increase in biological potency. However, the three component model predicts that the magnitude of increase in biological potency will be a small fraction of the proportional increase in affinity. With typical initial conditions a two-fold increase in hormone affinity for its receptor is predicted to result in only a 33% increase in biological response. Under the same conditions an Ii-fold increase in hormone affinity for receptor would be needed to produce a two-fold increase in biological potency. Some currently used bioassay systems may be unrecognized three component systems and gross errors in biopotency estimates will result if the effect of binding protein is not calculated. An algorithm derived from the three component model is used to predict changes in biological response after addition of binding protein to in vitro systems. The algorithm is tested by application to a published data set from an experimental study in an in vitro system (Lim et al., 1990, Endocrinology 127, 1287-1291). Predicted changes show good agreement (within 8%) with experimental observations. (C) 1998 Academic Press Limited.
Resumo:
We review the description of noise in electronic circuits in terms of electron transport. The Poisson process is used as a unifying principle. In recent years, much attention has been given to current noise in light-emitting diodes and laser diodes. In these devices, random events associated with electron transport are correlated with photon emission times, thus modifying both the current statistics and the statistics of the emitted light. We give a review of experiments in this area with special emphasis on the ability of such devices to produce subshot-noise currents and light beams. Finally we consider the noise properties of a class of mesoscopic devices based on the quantum tunnelling of an electron into and out of a bound state. We present a simple quantum model of this process which confirms that the current noise in such a device should be subshot-noise.
Resumo:
A theoretical analysis is carried out to investigate the pore-fluid pressure gradient and effective vertical-stress gradient distribution in fluid saturated porous rock masses in layered hydrodynamic systems. Three important concepts, namely the critical porosity of a porous medium, the intrinsic Fore-fluid pressure and the intrinsic effective vertical stress of the solid matrix, are presented and discussed. Using some basic scientific principles, we derive analytical solutions and explore the conditions under which either the intrinsic pore-fluid pressure gradient or the intrinsic effective vertical-stress gradient can be maintained at the value of the lithostatic pressure gradient. Even though the intrinsic pore-fluid pressure gradient can be maintained at the value of the lithostatic pressure gradient in a single layer, it is impossible to maintain it at this value in all layers in a layered hydrodynamic system, unless all layers have the same permeability and porosity simultaneously. However, the intrinsic effective vertical-stress gradient of the solid matrix can be maintained at a value close to the lithostatic pressure gradient in all layers in any layered hydrodynamic system within the scope of this study.
Resumo:
Recently the problem of the existence of a 5-cycle system of K-v with a hole of size u was completely solved. In this paper we prove necessary and sufficient conditions on v and u for the existence of a 5-cycle system of K-v - F, with a hole of size u.
Resumo:
We describe a method which, in certain circumstances, may be used to prove that the well-known necessary conditions for partitioning the edge set of the complete graph on an odd number of vertices (or the complete graph on an even number of vertices with a 1-factor removed) into cycles of lengths m(1),m(2),...,m(t) are sufficient in the case \{m(1), m(2), ..., m(t)}\=2. The method is used to settle the case where the cycle lengths are 4 and 5. (C) 1998 Elsevier Science B.V. All rights reserved.
Resumo:
The mRNA differential display technique was used to compare mRNAs between normal mammary gland and turner-derived epithelial cells from female Sprague-Dawley rat mammary gland tumors induced by the heterocyclic amine 2-amino-1-methyl-6-phenylimidazo[4,5-b]pyridine (PhIP) and promoted by a high-fat diet (23.5% corn oil). Two genes, beta-casein and transferrin, were identified as differentially expressed. The expression of these genes was examined across a bank of rat mammary gland tumors derived from animals on a low-fat diet (5% corn oil) or the high-fat diet. Carcinomas had over a 10- and 50-fold lower expression of beta-casein and transferrin, respectively than normal mammary gland. In addition, carcinomas from animals on the high-fat diet showed on average a 5-fold higher expression of beta-casein, and transferrin than carcinomas from animals on the low-fat diet. The results indicate the process of mammary gland tumorigenesis alters the expression of certain genes in the mammary gland, and that the level of dietary fat further modulates the expression of these genes.
Resumo:
Polymerase chain reaction (PCR)-based differential display was used to screen for alterations in gene expression in the mesolimbic system of the human alcoholic brain. Total RNA was extracted from the nucleus accumbens of five alcoholic and five control brains. A selected subpopulation of mRNA was reverse-transcribed to cDNA and amplified by PCR. A differentially expressed cDNA fragment was recovered, cloned, and sequenced. Full sequence analysis of this 467 bp fragment revealed 98.2% homology with the human mitochondrial 12S rRNA gene. Dot-blot analysis showed increased expression of this gem in nucleus accumbens and hippocampus, but not in the superior frontal cortex, primary motor cortex, caudate, and pallidus/putamen In a total of eight human alcoholic brains, compared with seven control brains. A similar increased expression was observed by dot-blot analysis, using RNA from the cerebral cortex of rats chronically treated with alcohol vapor. Hybridization of a 16S rRNA oligonucleotide probe indicated that the expression of both rRNAs genes was significantly increased in nucleus accumbens. These results indicate that chronic alcohol consumption induces alteration in expression of mitochondrial genes in selected brain regions. The altered gene expression may reflect mitochondrial dysfunction In the alcohol-affected brain.
Resumo:
A quantum Markovian master equation is derived to describe the current noise in resonant tunneling devices. This equation includes both incoherent and coherent quantum tunneling processes. We show how to obtain the population master equation by adiabatic elimination of quantum coherences in the presence of elastic scattering. We calculate the noise spectrum for a double well device and predict subshot noise statistics for strong tunneling between the wells. The method is an alternative to Green's function methods and population master equations for very small coherently coupled quantum dots.