973 resultados para Electric circuit analysis.


Relevância:

30.00% 30.00%

Publicador:

Resumo:

A interferência eletromagnética causada pela linha de energia elétrica afeta negativamente os sinais de instrumentos eletrônicos, especialmente aqueles com baixos níveis de amplitude. Este tipo de interferência é conhecida como interferência de modo comum. Existem muitos métodos e arquiteturas utilizadas para minimizar a influência deste fenômeno de interferência em instrumentos eletrônicos, o mais comum dos quais é a utilização de filtros rejeita banda. Este trabalho apresenta: a análise, desenvolvimento, protótipo e teste de uma nova arquitetura de filtro com característica reconfigurável para instrumentos biomédicos e medição de dados de fluxo em fluido de alta complexidade, com objetivo de reduzir a interferência de modo comum e preservar as componentes do sinal útil na mesma faixa de frequência do ruído, utilizando a técnica de equilíbrio dinâmico de impedância. Além disso, este trabalho pode ser usado em qualquer sistema de medição que também sofra interferência na frequência da linha de alimentação (50/60 Hz, no Brasil e na França, 60 Hz nos Estados Unidos da América). Os blocos de circuitos foram modelados matematicamente e a função de transferência global do circuito fechado foi gerada. Em seguida, o projeto foi descrito e simulado na língua VHDL_AMS e também em um software de simulação eletrônica, usando blocos de componentes discretos, com e sem realimentação. Após análise teórica dos resultados da simulação, um circuito protótipo foi construído e testado usando como entrada um sinal obtido a partir de eletrodos de ECG e Eletrodos Eletroresistivos. Os resultados experimentais do circuito condizem com os da simulação: uma redução de ruído de 98,7% foi obtida em simulações utilizando um sinal sinusoidal, e uma redução de 92% foi realizada utilizando eletrodos de ECG em testes experimentais. Os mesmos testes em eletrodos Eletroresistivos, obtendo o maior valor de 80,3% de redução (durante análise de 3 casos). Em ambos os casos, o sinal útil foi preservado. O método e a sua arquitetura pode ser aplicado para atenuar as interferências que ocorrem na mesma banda de frequência das componentes do sinal útil, preservando ao mesmo tempo estes sinais.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In this work, we analyze modified bowtie nanoantennas with polynomial sides in the excitation and emission regimes. In the excitation regime, the antennas are illuminated by an incident plane wave, and in the emission regime, the excitation is fulfilled by infinitesimal electric dipole positioned in the gap of the nanoantennas. Several antennas with different sizes and polynomial order were numerically analyzed by method of moments. The results show that these novel antennas possess a controllable resonance by the polynomial order and good characteristics of near field enhancement and confinement for applications in enhancement of spontaneous emission of a single molecule.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Pós-graduação em Engenharia Elétrica - FEIS

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The objective of the present article is to assess and compare the performance of electricity generation systems integrated with downdraft biomass gasifiers for distributed power generation. A model for estimating the electric power generation of internal combustion engines and gas turbines powered by syngas was developed. First, the model determines the syngas composition and the lower heating value; and second, these data are used to evaluate power generation in Otto, Diesel, and Brayton cycles. Four synthesis gas compositions were tested for gasification with: air; pure oxygen; 60% oxygen with 40% steam; and 60% air with 40% steam. The results show a maximum power ratio of 0.567 kWh/Nm(3) for the gas turbine system, 0.647 kWh/Nm(3) for the compression ignition engine, and 0.775 kWh/Nm(3) for the spark-ignition engine while running on synthesis gas which was produced using pure oxygen as gasification agent. When these three systems run on synthesis gas produced using atmospheric air as gasification agent, the maximum power ratios were 0.274 kWh/Nm(3) for the gas turbine system, 0.302 kWh/Nm(3) for CIE, and 0.282 kWh/Nm(3) for SIE. The relationship between power output and synthesis gas flow variations is presented as is the dependence of efficiency on compression ratios. Since the maximum attainable power ratio of CIE is higher than that of SIE for gasification with air, more research should be performed on utilization of synthesis gas in CIE. (C) 2014 Elsevier Ltd. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

One of the biggest challenges today is to develop clean fuels, which do not emit pollutant and with viable implementation. One of the options currently under study is the hydrogen production process. In this context, this work aims to study the technical and economical aspects of the incorporation process of hydrogen producing by ethanol steam reforming in the sugar cane industry and MCFC (molten carbonate fuel cell) application on it to generate electric power. Therefore, it has been proposed a modification in the traditional process of sugar cane industry, in order to incorporate hydrogen production, besides the traditional products (sugar, ethylic, hydrated and anhydric alcohol). For this purpose, a detailed theoretical study of the ethanol production process, describing the considerations to incorporate the hydrogen production will be performed. After that, there will be a thermodynamic study for analysing the innovation of this production chain, as well as a study of economic engineering to allocate the costs of products of the new process, optimising it and considering the thermoeconomics as being as an analysis tool. This proposal aims to improve Brazil's position in the ranking of international biofuels, corroborating the nation to be a power in the hydrogen era. (C) 2013 Elsevier Ltd. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Cogeneration may be defined as the simultaneous production of electric power and useful heat from the burning of a single fuel. This technique of combined heat and power production has been applied in both the industrial and tertiary sectors. It has been mainly used because of its overall efficiency, and the guarantee of electricity with a low level of environmental impact. The compact cogeneration systems using internal combustion engine as prime movers are thoroughly applied because of the good relationship among cost and benefit obtained in such devices. The cogeneration system of this study consists of an internal combustion engine using natural gas or biogas as fuel, combined with two heat exchangers and an absorption chiller utilising water-ammonia as working mixture. This work presents an energetic and economic comparison between natural gas and biogas as fuel used for the system proposed. The results are useful to identify the feasible applications for this system, such as residential sector in isolated areas, hotels, universities etc. (C) 2014 Elsevier Ltd. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The paper describes the preliminary studies of University of Minho on the use of Electric Impedance/Resistance Tomography to assess masonry structures. The study is focused on the analysis of values of current and voltage resulting from the use of an electrical source with voltage and frequency values from a distribution network. The analysis is made from results obtained through computer simulations, using a three-dimensional model of the idealized masonry structures. A finite element program was used for the simulations. Three types of electrodes were used in simulations, and the analysis of the results led to significant conclusions. Later masonry specimens were built and a series of preliminary tests were carried out in the laboratory. The comparative analysis of simulated and experimental results allowed identifying the factors that have influence on the physical results.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

With the growth of the demand on electric energy in the last decades, the urban distribution and transmission systems have experienced a bigger necessity to improve on the substations, the automation procedures and techniques on the operation maneuvers of such systems, in a sense that better attends the quality levels, availability, continuity and operational reliability. In this way, the objective of the present paper is to perform a study of protection and control on an electrical industrial system involving the procedures of digitizing and maneuvers automatism utilizing operational techniques and other pertinent information used in a typical high-voltage Industrial Electrical System. Analysis were made on short-circuits to specify the main components of the 138 [kV] substation, in addition, there were used digital MiCOM relays to make the protection of the present elements. With that, a program was developed to allow the user to monitor the condition of circuit-breakers through a supervision screen being able to simulate some kinds of faults, as well as observing the characteristics of each device. This way, the importance of having a fast and reliable system that ensures the equipment’s protection and the industrial process continuity due to faults on the electrical system is noticeable. It’s important to highlight that all this digitizing was mainly favored by the development of digital technology on the last years, mainly on microelectronics, also with the appearance of supervision gadgets allowing the development of complex systems in supervision and electric energy control

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Distribution networks are formed by long lines that carry electricity substations to homes and industries. These lines have associated impedance and depending on operating conditions of the network these impedances may vary. This paper provides a detailed analysis of the effects observed in studies of voltage drop, short circuit and electrical losses, when considered the drivers sequence impedances used in primary distribution network at different temperatures. Therefore, it is initially presented a calculation methodology and details the factors that influence the final values. The methodology presented tackles in a practical way the main factors that directly or indirectly influence the values of the impedances as an emblematic example and will be properly dealt with throughout the paper is the effect of temperature on the values of the sequence impedances. More specifically is dealt with the case of XLPE cables protected, by having a higher maximum operating temperature than the operating temperature of the network. The effects observed in the power flow generated when considering the impedance values at both temperatures were analyzed. The impedance drivers tend to increase with increasing temperature. Thus the impedance of the conductor XLPE protected will tend to be greater for the maximum operating temperature for which the operating temperature of the network, resulting in greater voltage drop and higher electrical losses

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Electric power distribution systems, and particularly those with overhead circuits, operate radially but as the topology of the systems is meshed, therefore a set of circuits needs to be disconnected. In this context the problem of optimal reconfiguration of a distribution system is formulated with the goal of finding a radial topology for the operation of the system. This paper utilizes experimental tests and preliminary theoretical analysis to show that radial topology is one of the worst topologies to use if the goal is to minimize power losses in a power distribution system. For this reason, it is important to initiate a theoretical and practical discussion on whether it is worthwhile to operate a distribution system in a radial form. This topic is becoming increasingly important within the modern operation of electrical systems, which requires them to operate as efficiently as possible, utilizing all available resources to improve and optimize the operation of electric power systems. Experimental tests demonstrate the importance of this issue. (C) 2014 Elsevier Ltd. All rights reserved.