393 resultados para Effectors
Resumo:
The Endosomal Sorting Complex Required for Transport (ESCRT)-complex is composed of four complexes, ESCRT-0-III. They sequentially act on a late endosome to sort mono-ubiquitinated transmembrane proteins into the intralumenal vesicle, forming of a multivesicular body(MVB) that is delivered to vacuole for degradation. In Arabidopsis thaliana, the loss of an ESCRT-I component, elch displays a cytokinesis defect; while a dominant negative expression of an ESCRT-III component results in cell death due to vacuolar loss. In this work, the function of a plant-specific ELCH-interactor, CELL DEATH RELATED FYVE/SYLF DOMAIN CONTAINING 1 (CFS1) and its influences on the ESCRT-complex function are investigated. CFS1 is a phosphatidylinositol-3-phosphate- and actin-binding protein. The cfs1 mutants mimic lesions in the first eldest leaf that propagate to the next eldest one. Genetic analyses have demonstrated that cell death in cfs1 does not require a functional ESCRT-I component; nevertheless, the loss of CFS1 alleviates elchcytokinesis defect, suggesting its influence on the ESCRT-I function. Further analyses reveal that cfs1 accumulates autophagosomes throughout its lifespan due to a decrease in autophagosome degradation, suggesting that as the plant ages, the cumulated autophagosomes falsely trigger effectors-triggered immunity that executes cell death in cfs1. As the ESCRT-complex has been demonstrated to be involved in the delivery of autophagosomes to vacuole and CFS1 homolog, CFS2 reportedly interacts with ATG8, it can be postulated from the results of this work that CFS1 alone or together with CFS2 function in sequestering mature autophagosomes onto MVBs. At the MVBs, the ESCRT-complex then mediates the fusion of autophagosome and MVB for subsequent delivery to vacuole.
Resumo:
La malaria est une maladie infectieuse causant plus de 500 000 morts chaque année. La maladie est causée par un protozoaire de la famille Plasmodium. L’apparition de souches résistantes aux traitements actuels et l’absence de vaccin efficace rendent la découverte de nouvelles cibles thérapeutiques urgente. Le parasite possède un complexe apical, un groupement de vacuoles sécrétoires spécialisées contenant les protéines responsables de l’invasion du globule rouge. Nous nous intéressons aux mécanismes gouvernant le transport intracellulaire de ces protéines et à la biogenèse du complexe apical lors de la formation des nouveaux parasites. Plus particulièrement, nous nous intéressons au rôle des phosphoinositides dans le recrutement des protéines à la membrane de l’appareil de Golgi. Par analyse bio-informatique du génome de P. falciparum, nous avons identifié plusieurs protéines effectrices liant potentiellement les phosphoinositides. Les travaux présentés dans ce mémoire concernent Mal13P1.188, une protéine possédant un domaine Pleckstrin homology. Nous proposons que Mal13P1.188 ait un rôle dans la génération du complexe apical en recrutant les protéines le constituant à la membrane du Golgi par la liaison avec les phosphoinositides. Afin de vérifier nos hypothèses, nous avons généré une lignée de parasite dont le gène de Mal13P1.188 est fusionné avec une GFP et une hémagglutinine. À l’aide de cette lignée de parasite, nous avons pu identifier Mal13P1.188 à proximité de l’appareil de Golgi lorsque les parasites étaient sous la forme schizont du cycle érythrocytaire. D’autres expériences ont permis de confirmer que le domaine Pleckstrin homology de Mal13P1.188 était capable de reconnaître les différentes formes de phosphoinositides. Finalement, d’autres travaux devront être faits sur Mal13P1.188 afin de déterminer si elle est essentielle à la survie du parasite.
Resumo:
The migratory endoparasitic nematode Bursaphelenchus xylophilus, which is the causal agent of pine wilt disease, has phytophagous and mycetophagous phases during its life cycle. This highly unusual feature distinguishes it from other plantparasitic nematodes and requires profound changes in biology between modes. During the phytophagous stage, the nematode migrates within pine trees, feeding on the contents of parenchymal cells. Like other plant pathogens, B. xylophilus secretes effectors from pharyngeal gland cells into the host during infection.We provide the first description of changes in the morphology of these gland cells between juvenile and adult life stages. Using a comparative transcriptomics approach and an effector identification pipeline, we identify numerous novel parasitism genes which may be important for the mediation of interactions of B. xylophilus with its host. In-depth characterization of all parasitism genes using in situ hybridization reveals two major categories of detoxification proteins, those specifically expressed in either the pharyngeal gland cells or the digestive system. These data suggest that B. xylophilus incorporates effectors in a multilayer detoxification strategy in order to protect itself from host defence responses during phytophagy.