909 resultados para EXPLORATORY DATA ANALYSIS
Resumo:
Background: Dermatomyositis (DM) and polymyositis (PM) are rare systemic autoimmune rheumatic diseases with high fatality rates. There have been few population-based mortality studies of dermatomyositis and polymyositis in the world, and none have been conducted in Brazil. The objective of the present study was to employ multiple-cause of-death methodology in the analysis of trends in mortality related to dermatomyositis and polymyositis in the state of Sao Paulo, Brazil, between 1985 and 2007. Methods: We analyzed mortality data from the Sao Paulo State Data Analysis System, selecting all death certificates on which DM or PM was listed as a cause of death. The variables sex, age and underlying, associated or total mentions of causes of death were studied using mortality rates, proportions and historical trends. Statistical analysis were performed by chi-square and H Kruskal-Wallis tests, variance analysis and linear regression. A p value less than 0.05 was regarded as significant. Results: Over a 23-year period, there were 318 DM-related deaths and 316 PM-related deaths. Overall, DM/PM was designated as an underlying cause in 55.2% and as an associated cause in 44.8%; among 634 total deaths females accounted for 71.5%. During the study period, age-and gender-adjusted DM mortality rates did not change significantly, although PM as an underlying cause and total mentions of PM trended lower (p < 0.05). The mean ages at death were 47.76 +/- 20.81 years for DM and 54.24 +/- 17.94 years for PM (p = 0.0003). For DM/PM, respectively, as underlying causes, the principal associated causes of death were as follows: pneumonia (in 43.8%/33.5%); respiratory failure (in 34.4%/32.3%); interstitial pulmonary diseases and other pulmonary conditions (in 28.9%/17.6%); and septicemia (in 22.8%/15.9%). For DM/PM, respectively, as associated causes, the following were the principal underlying causes of death: respiratory disorders (in 28.3%/26.0%); circulatory disorders (in 17.4%/20.5%); neoplasms (in 16.7%/13.7%); infectious and parasitic diseases (in 11.6%/9.6%); and gastrointestinal disorders (in 8.0%/4.8%). Of the 318 DM-related deaths, 36 involved neoplasms, compared with 20 of the 316 PM-related deaths (p = 0.03). Conclusions: Our study using multiple cause of deaths found that DM/PM were identified as the underlying cause of death in only 55.2% of the deaths, indicating that both diseases were underestimated in the primary mortality statistics. We observed a predominance of deaths in women and in older individuals, as well as a trend toward stability in the mortality rates. We have confirmed that the risk of death is greater when either disease is accompanied by neoplasm, albeit to lesser degree in individuals with PM. The investigation of the underlying and associated causes of death related to DM/PM broaden the knowledge of the natural history of both diseases and could help integrate mortality data for use in the evaluation of control measures for DM/PM.
Resumo:
Recurrences are close returns of a given state in a time series, and can be used to identify different dynamical regimes and other related phenomena, being particularly suited for analyzing experimental data. In this work, we use recurrence quantification analysis to investigate dynamical patterns in scalar data series obtained from measurements of floating potential and ion saturation current at the plasma edge of the Tokamak Chauffage Alfveacuten Breacutesilien [R. M. O. Galva approximate to o , Plasma Phys. Controlled Fusion 43, 1181 (2001)]. We consider plasma discharges with and without the application of radial electric bias, and also with two different regimes of current ramp. Our results indicate that biasing improves confinement through destroying highly recurrent regions within the plasma column that enhance particle and heat transport.
Resumo:
Alternative splicing of gene transcripts greatly expands the functional capacity of the genome, and certain splice isoforms may indicate specific disease states such as cancer. Splice junction microarrays interrogate thousands of splice junctions, but data analysis is difficult and error prone because of the increased complexity compared to differential gene expression analysis. We present Rank Change Detection (RCD) as a method to identify differential splicing events based upon a straightforward probabilistic model comparing the over-or underrepresentation of two or more competing isoforms. RCD has advantages over commonly used methods because it is robust to false positive errors due to nonlinear trends in microarray measurements. Further, RCD does not depend on prior knowledge of splice isoforms, yet it takes advantage of the inherent structure of mutually exclusive junctions, and it is conceptually generalizable to other types of splicing arrays or RNA-Seq. RCD specifically identifies the biologically important cases when a splice junction becomes more or less prevalent compared to other mutually exclusive junctions. The example data is from different cell lines of glioblastoma tumors assayed with Agilent microarrays.
Resumo:
A rapid method for classification of mineral waters is proposed. The discrimination power was evaluated by a novel combination of chemometric data analysis and qualitative multi-elemental fingerprints of mineral water samples acquired from different regions of the Brazilian territory. The classification of mineral waters was assessed using only the wavelength emission intensities obtained by inductively coupled plasma optical emission spectrometry (ICP OES), monitoring different lines of Al, B, Ba, Ca, Cl, Cu, Co, Cr, Fe, K, Mg, Mn, Na, Ni, P, Pb, S, Sb, Si, Sr, Ti, V, and Zn, and Be, Dy, Gd, In, La, Sc and Y as internal standards. Data acquisition was done under robust (RC) and non-robust (NRC) conditions. Also, the combination of signal intensities of two or more emission lines for each element were evaluated instead of the individual lines. The performance of two classification-k-nearest neighbor (kNN) and soft independent modeling of class analogy (SIMCA)-and preprocessing algorithms, autoscaling and Pareto scaling, were evaluated for the ability to differentiate between the various samples in each approach tested (combination of robust or non-robust conditions with use of individual lines or sum of the intensities of emission lines). It was shown that qualitative ICP OES fingerprinting in combination with multivariate analysis is a promising analytical tool that has potential to become a recognized procedure for rapid authenticity and adulteration testing of mineral water samples or other material whose physicochemical properties (or origin) are directly related to mineral content.
Resumo:
In this paper, we compare three residuals to assess departures from the error assumptions as well as to detect outlying observations in log-Burr XII regression models with censored observations. These residuals can also be used for the log-logistic regression model, which is a special case of the log-Burr XII regression model. For different parameter settings, sample sizes and censoring percentages, various simulation studies are performed and the empirical distribution of each residual is displayed and compared with the standard normal distribution. These studies suggest that the residual analysis usually performed in normal linear regression models can be straightforwardly extended to the modified martingale-type residual in log-Burr XII regression models with censored data.
Resumo:
A four-parameter extension of the generalized gamma distribution capable of modelling a bathtub-shaped hazard rate function is defined and studied. The beauty and importance of this distribution lies in its ability to model monotone and non-monotone failure rate functions, which are quite common in lifetime data analysis and reliability. The new distribution has a number of well-known lifetime special sub-models, such as the exponentiated Weibull, exponentiated generalized half-normal, exponentiated gamma and generalized Rayleigh, among others. We derive two infinite sum representations for its moments. We calculate the density of the order statistics and two expansions for their moments. The method of maximum likelihood is used for estimating the model parameters and the observed information matrix is obtained. Finally, a real data set from the medical area is analysed.
Resumo:
Joint generalized linear models and double generalized linear models (DGLMs) were designed to model outcomes for which the variability can be explained using factors and/or covariates. When such factors operate, the usual normal regression models, which inherently exhibit constant variance, will under-represent variation in the data and hence may lead to erroneous inferences. For count and proportion data, such noise factors can generate a so-called overdispersion effect, and the use of binomial and Poisson models underestimates the variability and, consequently, incorrectly indicate significant effects. In this manuscript, we propose a DGLM from a Bayesian perspective, focusing on the case of proportion data, where the overdispersion can be modeled using a random effect that depends on some noise factors. The posterior joint density function was sampled using Monte Carlo Markov Chain algorithms, allowing inferences over the model parameters. An application to a data set on apple tissue culture is presented, for which it is shown that the Bayesian approach is quite feasible, even when limited prior information is available, thereby generating valuable insight for the researcher about its experimental results.
Resumo:
Disease resistance is associated with a plant defense response that involves an integrated set of signal transduction pathways. Changes in the expression patterns of 2.375 selected genes were examined simultaneously by cDNA microarray analysis in Arabidopsis thaliana after inoculation with an incompatible fungal pathogen Alternaria brassicicola or treatment with the defense-related signaling molecules salicylic acid (SA), methyl jasmonate (MJ), or ethylene, Substantial changes (up- and down-regulation) in the steady-state abundance of 705 mRNAs were observed in response to one or more of the treatments, including known and putative defense-related genes and 106 genes with no previously described function or homology, In leaf tissue inoculated with A. brassicicola, the abundance of 168 mRNAs was increased more than 2.5-fold, whereas that of 39 mRNAs was reduced. Similarly, the abundance of 192, 221, and 55 mRNAs was highly (>2.5-fold) increased after treatment with SA, MJ, and ethylene, respectively. Data analysis revealed a surprising level of coordinated defense responses, including 169 mRNAs regulated by multiple treatments/defense pathways. The largest number of genes coinduced (one of four induced genes) and corepressed was found after treatments with SA and MJ. In addition, 50% of the genes induced by ethylene treatment were also induced by MJ treatment. These results indicated the existence of a substantial network of regulatory interactions and coordination occurring during plant defense among the different defense signaling pathways, notably between the salicylate and jasmonate pathways that were previously thought to act in an antagonistic fashion.
Resumo:
The stock market suffers uncertain relations throughout the entire negotiation process, with different variables exerting direct and indirect influence on stock prices. This study focuses on the analysis of certain aspects that may influence these values offered by the capital market, based on the Brazil Index of the Sao Paulo Stock Exchange (Bovespa), which selects 100 stocks among the most traded on Bovespa in terms of number of trades and financial volume. The selected variables are characterized by the companies` activity area and the business volume in the month of data collection, i.e. April/2007. This article proposes an analysis that joins the accounting view of the stock price variables that can be influenced with the use of multivariate qualitative data analysis. Data were explored through Correspondence Analysis (Anacor) and Homogeneity Analysis (Homals). According to the research, the selected variables are associated with the values presented by the stocks, which become an internal control instrument and a decision-making tool when it comes to choosing investments.
Resumo:
An important segmentation basis used by firms is related to consumers` personal values which are investigated in this study. It was used a descriptive research with the survey method of data collection in a sample of executives from Sao Paulo who are considered to be potential buyers of high value and innovative goods. An exploratory factor analysis was employed in order to reduce the values scale used and a cluster analysis was performed to identify the groups of executives according to the importance attached to different person values. Concluding, it was observed that there was a similarity among the three personal values dimensions, named as Civility (concerns about having a good conduct before society according to social rules of interaction), Self-Direction (intellectual aspects and practical orientation in their conducts) and Conformity (restriction of actions, inclinations and impulses, that are likely to harm others and would violate expectations) and the ones reported in the theory Rokeach`s theory about instrumental personal values. Furthermore, three groups of executives were identified (good conduct group, low restriction group and high restriction group). The differences observed in the importance of personal values here presented by the dimensions called Civility, Self-Direction and Conformity can lead to different buying behaviors and product preferences. From the results found in this study the companies could adapt their current and new products offers, as well as their communication in order to better serve these segments of executives from Sao Paulo.
Resumo:
Objective: To compare rates of self-reported use of health services between rural, remote and urban South Australians. Methods: Secondary data analysis from a population-based survey to assess health and well-being, conducted in South Australia in 2000. In all, 2,454 adults were randomly selected and interviewed using the computer-assisted telephone interview (CATI) system. We analysed health service use by Accessibility and Remoteness Index of Australia (ARIA) category. Results: There was no statistically significant difference in the median number of uses of the four types of health services studied across ARIA categories. Significantly fewer residents of highly accessible areas reported never using primary care services (14.4% vs. 22.2% in very remote areas), and significantly more reported high use ( greater than or equal to6 visits, 29.3% vs. 21.5%). Fewer residents of remote areas reported never attending hospital (65.6% vs. 73.8% in highly accessible areas). Frequency of use of mental health services was not statistically significantly different across ARIA categories. Very remote residents were more likely to spend at least one night in a public hospital (15.8%) than were residents of other areas (e.g. 5.9% for highly accessible areas). Conclusion: The self-reported frequency of use of a range of health services in South Australia was broadly similar across ARIA categories. However, use of primary care services was higher among residents of highly accessible areas and public hospital use increased with increasing remoteness. There is no evidence for systematic rural disadvantage in terms of self-reported health service utilisation in this State.
Resumo:
Aim: To look at the characteristics of Postgraduate Hospital Educational Environment Measure (PHEEM) using data from the UK, Brazil, Chile and the Netherlands, and to examine the reliability and characteristics of PHEEM, especially how the three PHEEM subscales fitted with factors derived statistically from the data sets. Methods: Statistical analysis of PHEEM scores from 1563 sets of data, using reliability analysis, exploratory factor analysis and correlations of factors derived with the three defined PHEEM subscales. Results: PHEEM was very reliable with an overall Cronbach`s alpha of 0.928. Three factors were derived by exploratory factor analysis. Factor One correlated most strongly with the teaching subscale (R=0.802), Factor Two correlated most strongly with the role autonomy subscale (R=0.623) and Factor Three correlated most strongly with the social support subscale (R=0.538). Conclusions: PHEEM is a multi-dimensional instrument. Overall, it is very reliable. There is a good fit of the three defined subscales, derived by qualitative methods, with the three principal factors derived from the data by exploratory factor analysis.
Resumo:
Binning and truncation of data are common in data analysis and machine learning. This paper addresses the problem of fitting mixture densities to multivariate binned and truncated data. The EM approach proposed by McLachlan and Jones (Biometrics, 44: 2, 571-578, 1988) for the univariate case is generalized to multivariate measurements. The multivariate solution requires the evaluation of multidimensional integrals over each bin at each iteration of the EM procedure. Naive implementation of the procedure can lead to computationally inefficient results. To reduce the computational cost a number of straightforward numerical techniques are proposed. Results on simulated data indicate that the proposed methods can achieve significant computational gains with no loss in the accuracy of the final parameter estimates. Furthermore, experimental results suggest that with a sufficient number of bins and data points it is possible to estimate the true underlying density almost as well as if the data were not binned. The paper concludes with a brief description of an application of this approach to diagnosis of iron deficiency anemia, in the context of binned and truncated bivariate measurements of volume and hemoglobin concentration from an individual's red blood cells.
Resumo:
Developed, piloted, and examined the psychometric properties of the Child and Adolescent Social and Adaptive Functioning Scale (CASAFS), a self-report measure designed to examine the social functioning of young people in the areas of school performance, peer relationships, family relationships, and home duties/self-care. The findings of confirmatory and exploratory factor analysis support a 4-factor solution consistent with the hypothesized domains. Fit indexes suggested that the 4-correlated factor model represented a satisfactory solution for the data, with the covariation between factors being satisfactorily explained by a single, higher order factor reflecting social and adaptive functioning in general. The internal consistency and 12-month test-retest reliability of the total scale was acceptable. A significant, negative correlation was found between the CASAFS and a measure of depressive symptoms, showing that high levels of social functioning are associated with low levels of depression. Significant differences in CASAFS total and subscale scores were found between clinically depressed adolescents and a matched sample of nonclinical controls. Adolescents who reported elevated but subclinical levels of depression also reported lower levels of social functioning in comparison to nonclinical controls.
Resumo:
An increasing number of studies shows that the glycogen-accumulating organisms (GAOs) can survive and may indeed proliferate under the alternating anaerobic/aerobic conditions found in EBPR systems, thus forming a strong competitor of the polyphosphate-accumulating organisms (PAOs). Understanding their behaviors in a mixed PAO and GAO culture under various operational conditions is essential for developing operating strategies that disadvantage the growth of this group of unwanted organisms. A model-based data analysis method is developed in this paper for the study of the anaerobic PAO and GAO activities in a mixed PAO and GAO culture. The method primarily makes use of the hydrogen ion production rate and the carbon dioxide transfer rate resulting from the acetate uptake processes by PAOs and GAOs, measured with a recently developed titration and off-gas analysis (TOGA) sensor. The method is demonstrated using the data from a laboratory-scale sequencing batch reactor (SBR) operated under alternating anaerobic and aerobic conditions. The data analysis using the proposed method strongly indicates a coexistence of PAOs and GAOs in the system, which was independently confirmed by fluorescent in situ hybridization (FISH) measurement. The model-based analysis also allowed the identification of the respective acetate uptake rates by PAOs and GAOs, along with a number of kinetic and stoichiometric parameters involved in the PAO and GAO models. The excellent fit between the model predictions and the experimental data not involved in parameter identification shows that the parameter values found are reliable and accurate. It also demonstrates that the current anaerobic PAO and GAO models are able to accurately characterize the PAO/GAO mixed culture obtained in this study. This is of major importance as no pure culture of either PAOs or GAOs has been reported to date, and hence the current PAO and GAO models were developed for the interpretation of experimental results of mixed cultures. The proposed method is readily applicable for detailed investigations of the competition between PAOs and GAOs in enriched cultures. However, the fermentation of organic substrates carried out by ordinary heterotrophs needs to be accounted for when the method is applied to the study of PAO and GAO competition in full-scale sludges. (C) 2003 Wiley Periodicals, Inc.