993 resultados para ENERGY STATISTICS
Resumo:
We study the distribution of energy level spacings in two models describing coupled single-mode Bose-Einstein condensates. Both models have a fixed number of degrees of freedom, which is small compared to the number of interaction parameters, and is independent of the dimensionality of the Hilbert space. We find that the distribution follows a universal Poisson form independent of the choice of coupling parameters, which is indicative of the integrability of both models. These results complement those for integrable lattice models where the number of degrees of freedom increases with increasing dimensionality of the Hilbert space. Finally, we also show that for one model the inclusion of an additional interaction which breaks the integrability leads to a non-Poisson distribution.
Resumo:
The low-energy properties of the one-dimensional anyon gas with a delta-function interaction are discussed in the context of its Bethe ansatz solution. It is found that the anyonic statistical parameter and the dynamical coupling constant induce Haldane exclusion statistics interpolating between bosons and fermions. Moreover, the anyonic parameter may trigger statistics beyond Fermi statistics for which the exclusion parameter alpha is greater than one. The Tonks-Girardeau and the weak coupling limits are discussed in detail. The results support the universal role of alpha in the dispersion relations.
Resumo:
We present a fast method for finding optimal parameters for a low-resolution (threading) force field intended to distinguish correct from incorrect folds for a given protein sequence. In contrast to other methods, the parameterization uses information from >10(7) misfolded structures as well as a set of native sequence-structure pairs. In addition to testing the resulting force field's performance on the protein sequence threading problem, results are shown that characterize the number of parameters necessary for effective structure recognition.
Resumo:
The superfluous consumption of energy is faced by the modern society as a Socio-Economical and Environmental problem of the present days. This situation is worsening given that it is becoming clear that the tendency is to increase energy price every year. It is also noticeable that people, not necessarily proficient in technology, are not able to know where savings can be achieved, due to the absence of accessible awareness mechanisms. One of the home user concerns is to balance the need of reducing energy consumption, while producing the same activity with all the comfort and work efficiency. The common techniques to reduce the consumption are to use a less wasteful equipment, altering the equipment program to a more economical one or disconnecting appliances that are not necessary at the moment. However, there is no direct feedback from this performed actions, which leads to the situation where the user is not aware of the influence that these techniques have in the electrical bill. With the intension to give some control over the home consumption, Energy Management Systems (EMS) were developed. These systems allow the access to the consumption information and help understanding the energy waste. However, some studies have proven that these systems have a clear mismatch between the information that is presented and the one the user finds useful for his daily life, leading to demotivation of use. In order to create a solution more oriented towards the user’s demands, a specially tailored language (DSL) was implemented. This solution allows the user to acquire the information he considers useful, through the construction of questions about his energy consumption. The development of this language, following the Model Driven Development (MDD) approach, took into consideration the ideas of facility managers and home users in the phases of design and validation. These opinions were gathered through meetings with experts and a survey, which was conducted to the purpose of collecting statistics about what home users want to know.
Resumo:
This is a statistical bulletin from the Information Centre which presents a range of information on obesity, physical activity and diet, drawn together from a variety of sources. The topics covered include: overweight and obesity prevalence among adults and children physical activity levels among adults and children trends in purchases and consumption of food and drink, and energy intake health outcomes of being obese hospital admissions and prescriptions dispensed related to obesity. The bulletin also summarises government plans and targets in this area, as well as providing sources of further information and links to relevant documents.
Resumo:
This statistical report presents a range of information on obesity, physical activity and diet, drawn together from a variety of sources. The topics covered include: Overweight and obesity prevalence among adults and children; Physical activity levels among adults and children; Trends in purchases and consumption of food and drink and energy intake; and Health outcomes of being overweight or obese. refer to the resource
Resumo:
The Information Centre has published 'Statistics on Obesity, Physical Activity and Diet: England, 2011'. This statistical report presents a range of information on obesity, physical activity and diet, drawn together from a variety of sources. The topics covered include: overweight and obesity prevalence among adults and children; physical activity levels among adults and children; trends in purchases and consumption of food and drink and energy intake; and health outcomes of being overweight or obese.
Resumo:
Networks are considered increasingly important for policy-making. The literature on new modes of governance in Europe suggests that their horizontal coordination capacity and flexible and informal structures are particularly suitable for governing the multilevel architecture of the European polity. However, empirical evidence about the effects of networks on policy-making and public policies is still quite limited. This article uses the case of the European network of energy regulators to explore the determinants of the position of network members and, in turn, the domestic adoption of soft rules developed within this network. The empirical analysis, based on multivariate statistics and semi-directive interviews, supports the expectation that institutional complementarities increase actors' centrality in networks, while arguments based on organisational resources and age are disproved. Furthermore, results show that the overall level of adoption is considerable and that centrality might have a small positive effect on domestic adoption.
Resumo:
BACKGROUND Observational studies implicate higher dietary energy density (DED) as a potential risk factor for weight gain and obesity. It has been hypothesized that DED may also be associated with risk of type 2 diabetes (T2D), but limited evidence exists. Therefore, we investigated the association between DED and risk of T2D in a large prospective study with heterogeneity of dietary intake. METHODOLOGY/PRINCIPAL FINDINGS A case-cohort study was nested within the European Prospective Investigation into Cancer (EPIC) study of 340,234 participants contributing 3.99 million person years of follow-up, identifying 12,403 incident diabetes cases and a random subcohort of 16,835 individuals from 8 European countries. DED was calculated as energy (kcal) from foods (except beverages) divided by the weight (gram) of foods estimated from dietary questionnaires. Prentice-weighted Cox proportional hazard regression models were fitted by country. Risk estimates were pooled by random effects meta-analysis and heterogeneity was evaluated. Estimated mean (sd) DED was 1.5 (0.3) kcal/g among cases and subcohort members, varying across countries (range 1.4-1.7 kcal/g). After adjustment for age, sex, smoking, physical activity, alcohol intake, energy intake from beverages and misreporting of dietary intake, no association was observed between DED and T2D (HR 1.02 (95% CI: 0.93-1.13), which was consistent across countries (I(2) = 2.9%). CONCLUSIONS/SIGNIFICANCE In this large European case-cohort study no association between DED of solid and semi-solid foods and risk of T2D was observed. However, despite the fact that there currently is no conclusive evidence for an association between DED and T2DM risk, choosing low energy dense foods should be promoted as they support current WHO recommendations to prevent chronic diseases.
Resumo:
The energy and structure of dilute hard- and soft-sphere Bose gases are systematically studied in the framework of several many-body approaches, such as the variational correlated theory, the Bogoliubov model, and the uniform limit approximation, valid in the weak-interaction regime. When possible, the results are compared with the exact diffusion Monte Carlo ones. Jastrow-type correlation provides a good description of the systems, both hard- and soft-spheres, if the hypernetted chain energy functional is freely minimized and the resulting Euler equation is solved. The study of the soft-sphere potentials confirms the appearance of a dependence of the energy on the shape of the potential at gas paremeter values of x~0.001. For quantities other than the energy, such as the radial distribution functions and the momentum distributions, the dependence appears at any value of x. The occurrence of a maximum in the radial distribution function, in the momentum distribution, and in the excitation spectrum is a natural effect of the correlations when x increases. The asymptotic behaviors of the functions characterizing the structure of the systems are also investigated. The uniform limit approach is very easy to implement and provides a good description of the soft-sphere gas. Its reliability improves when the interaction weakens.
Resumo:
Vertebral fracture assessments (VFAs) using dual-energy X-ray absorptiometry increase vertebral fracture detection in clinical practice and are highly reproducible. Measures of reproducibility are dependent on the frequency and distribution of the event. The aim of this study was to compare 2 reproducibility measures, reliability and agreement, in VFA readings in both a population-based and a clinical cohort. We measured agreement and reliability by uniform kappa and Cohen's kappa for vertebral reading and fracture identification: 360 VFAs from a population-based cohort and 85 from a clinical cohort. In the population-based cohort, 12% of vertebrae were unreadable. Vertebral fracture prevalence ranged from 3% to 4%. Inter-reader and intrareader reliability with Cohen's kappa was fair to good (0.35-0.71 and 0.36-0.74, respectively), with good inter-reader and intrareader agreement by uniform kappa (0.74-0.98 and 0.76-0.99, respectively). In the clinical cohort, 15% of vertebrae were unreadable, and vertebral fracture prevalence ranged from 7.6% to 8.1%. Inter-reader reliability was moderate to good (0.43-0.71), and the agreement was good (0.68-0.91). In clinical situations, the levels of reproducibility measured by the 2 kappa statistics are concordant, so that either could be used to measure agreement and reliability. However, if events are rare, as in a population-based cohort, we recommend evaluating reproducibility using the uniform kappa, as Cohen's kappa may be less accurate.
Resumo:
In this article, the fusion of a stochastic metaheuristic as Simulated Annealing (SA) with classical criteria for convergence of Blind Separation of Sources (BSS), is shown. Although the topic of BSS, by means of various techniques, including ICA, PCA, and neural networks, has been amply discussed in the literature, to date the possibility of using simulated annealing algorithms has not been seriously explored. From experimental results, this paper demonstrates the possible benefits offered by SA in combination with high order statistical and mutual information criteria for BSS, such as robustness against local minima and a high degree of flexibility in the energy function.
Resumo:
Turbulence statistics obtained by direct numerical simulations are analysed to investigate spatial heterogeneity within regular arrays of building-like cubical obstacles. Two different array layouts are studied, staggered and square, both at a packing density of λp=0.25 . The flow statistics analysed are mean streamwise velocity ( u− ), shear stress ( u′w′−−−− ), turbulent kinetic energy (k) and dispersive stress fraction ( u˜w˜ ). The spatial flow patterns and spatial distribution of these statistics in the two arrays are found to be very different. Local regions of high spatial variability are identified. The overall spatial variances of the statistics are shown to be generally very significant in comparison with their spatial averages within the arrays. Above the arrays the spatial variances as well as dispersive stresses decay rapidly to zero. The heterogeneity is explored further by separately considering six different flow regimes identified within the arrays, described here as: channelling region, constricted region, intersection region, building wake region, canyon region and front-recirculation region. It is found that the flow in the first three regions is relatively homogeneous, but that spatial variances in the latter three regions are large, especially in the building wake and canyon regions. The implication is that, in general, the flow immediately behind (and, to a lesser extent, in front of) a building is much more heterogeneous than elsewhere, even in the relatively dense arrays considered here. Most of the dispersive stress is concentrated in these regions. Considering the experimental difficulties of obtaining enough point measurements to form a representative spatial average, the error incurred by degrading the sampling resolution is investigated. It is found that a good estimate for both area and line averages can be obtained using a relatively small number of strategically located sampling points.
Resumo:
The transition to a low-carbon economy urgently demands better information on the drivers of energy consumption. UK government policy has prioritized energy efficiency in the built stock as a means of carbon reduction, but the sector is historically information poor, particularly the non-domestic building stock. This paper presents the results of a pilot study that investigated whether and how property and energy consumption data might be combined for non-domestic energy analysis. These data were combined in a ‘Non-Domestic Energy Efficiency Database’ to describe the location and physical attributes of each property and its energy consumption. The aim was to support the generation of a range of energy-efficiency statistics for the industrial, commercial and institutional sectors of the non-domestic building stock, and to provide robust evidence for national energy-efficiency and carbon-reduction policy development and monitoring. The work has brought together non-domestic energy data, property data and mapping in a ‘data framework’ for the first time. The results show what is possible when these data are integrated and the associated difficulties. A data framework offers the potential to inform energy-efficiency policy formation and to support its monitoring at a level of detail not previously possible.