989 resultados para ELEMENT COMPOSITION
Resumo:
Studies of seafloor magnetic anomaly patterns suggest the presence of Jurassic oceanic crust in a large area in the western Pacific that includes the East Mariana, Nauru and Pigafetta Basins. Sampling of the igneous crust in this area by the Deep Sea Drilling Program (DSDP) and the Ocean Drilling Program (ODP) allows direct evaluation of the age and petrogenesis of this crust. ODP Leg 129 drilled a 51 m sequence of basalt pillows and massive flows in the central East Mariana Basin. 40Ar/39Ar ages determined in this study for two Leg 129 basalts average 114.6 +/- 3.2 Ma. This age is in agreement with the Albian-late Aptian paleontologic age of the overlying sediments, but is distinctively younger than the Jurassic age predicted by magnetic anomaly patterns in the basin. Compositionally, the East Mariana Basin basalts are uniformly low-K tholeiites that are depleted in highly incompatible elements compared to moderately incompatible ones, which is typical of mid-ocean ridge basalts (MORB) erupted near hotspots. The Sr, Nd and Pb isotopic compositions of the tholeiites (87Sr/86Sr init = 0.70360-0.70374; 143Nd/144Nd init = 0.512769-0.512790; 206Pb/204Pb meas = 18.355-18.386) also overlap with some Indian Ocean Ridge MORB, although they are distinct from the isotopic compositions of Jurassic basalts drilled in the Pigafetta Basin, the oldest Pacific MORB. The isotopic compositions of the East Mariana Basin tholeiites are also similar to those of intraplate basalts, and in particular, to the isotopic signature of basalts from the nearby Ontong Java and Manihiki Plateaus. The East Mariana Basin tholeiites also share many petrologic and isotopic characteristics with the oceanic basement drilled in the Nauru Basin at DSDP Site 462. In addition, the new 110.8 +/- 1.0 Ma 40Ar/39Ar age for two flows from the bottom of Site 462 in the Nauru Basin is indistinguishable from the age of the East Mariana Basin flows. Thus, while magnetic anomaly patterns predict that the igneous basement in the Nauru and East Mariana Basins is Jurassic in age, the geochemical and chronological results discussed here suggest that the basement formed during a Cretaceous rifting event within the Jurassic crust. This magmatic and tectonic event was created by the widespread volcanism responsible for the genesis of the large oceanic plateaus of the western Pacific.
Resumo:
Dansgaard-Oeschger (D-O) cycles in sediment at Site 1063 are characterized by distinct fluctuations in physical properties. Stadials are marked by low bulk density and interstadials by high bulk density. Compressional (P-)wave velocity is in phase with bulk density over some but not all depth intervals. Four of the D-O cycles straddling the oxygen isotope Stage 4/5 boundary have been studied in detail to understand the origin of the physical properties changes. Sediment on the Bermuda Rise is comprised of three main components: calcite, aluminosilicate minerals, and biogenic silica. Calcite concentrations vary from 1% to 43% of bulk sediment and are highest during interstadials. Aluminosilicate concentrations vary from 52% to 92% of bulk sediment and are highest during stadials. The major element ratios Al2O3/TiO2 and K2O/Al2O3 show increases across bulk density cycles, suggesting a change in the composition of aluminosilicates. This interpretation is supported by mineralogical analyses, which show a subtle change in clay composition. Biogenic silica concentrations vary from 0% to 23% of bulk sediment and are also highest during stadials. However, the abundance of silica varies significantly from one D-O cycle to another. Silt and fine sand abundance also increase during the first of the four stadials. This coarsening of sediment coincides with the increase in biogenic silica. The low grain density and high porosity associated with biogenic silica result in intervals of low bulk-sediment density. The abundance of biogenic silica closely matches P-wave velocity, suggesting that silica imparts a greater rigidity to the sediment.
Resumo:
Twenty-four piston core sediment samples and 13 sediments and 3 basalts from DSDP Leg 78 Site 543 were analyzed for Sr, Nd and Pb isotopic compositions. The results show sediment with highly radiogenic Pb (206Pb/204Pb up to 19.8) and rather radiogenic Sr and unradiogenic Nd has been deposited in the region since the Cretaceous. The source of this sediment is probably the Archean Guiana Highland, which is drained by the Orinoco River. Pb and Sr isotopic compositions and sediment thickness decrease and 143Nd/144Nd increases northward due to a decrease in turbiditic component. This decrease is partly due to the damming action of basement ridges. Rare earth concentrations in the sediments are somewhat low, due to the abundance of detrital and biogenic components in the sediment and rapid sedimentation rates. Both positive and negative Ce anomalies occur in the surface sediments, but only positive Ce anomalies occur in the Site 543 sediments. It is unlikely that sediment subducted to the source region of Lesser Antilles arc magmas could be the cause of negative Ce anomalies in those magmas. Isotopic compositions of Site 543 basalts show some effect of contamination by seawater-basalt reaction products and sediments. Beyond this, however, they are typical of "normal" depleted MORB.
Resumo:
Gabbroic xenoliths and diverse megacrysts (e.g., clinopyroxenes, amphiboles and plagioclases), which correspond to the lithology ranging from gabbro-norite to gabbro, occur in the Pleisto-Holocene alkali basalts from Jeju Island, South Korea. The gabbroic xenoliths consist primarily of moderate-K2O plagioclase, Ti-Al-rich clinopyroxene and CaO-rich orthopyroxene; additionally, TiO2-rich amphibole (kaersutite) and Ti-Fe oxides might or might not be present. The plagioclase is the most dominant phase (approx. 60-70 vol.%). The xenoliths and megacrysts provide evidence for the modal metasomatism of the lower continental crust by the mafic magmas during the Pleistocene. The coarse grain size (up to 5 mm), moderate Mg# [=100xMg/(Mg+Fe(total)) atomic ratio] of pyroxenes (70-77) and textural features (e.g., poikilitic) indicate that the gabbroic xenoliths are consistent with a cumulus origin. The clinopyroxenes from these xenoliths are enriched in REE with smooth convex-upward MREE patterns, which are expected for cumulus minerals formed from a melt enriched in incompatible trace elements. The strikingly similar major and trace element variations and the patterns of constituent minerals clearly indicate a genetic link between the gabbroic xenoliths (plus megacrysts) and the host basalt, indicating that the xenoliths belong to the Jeju Pleisto-Holocene magma system. On the basis of the textural features, the mineral equilibria and the major and trace element variations, the xenoliths appear to have crystallized from basaltic melts at the reservoir-roof environment within the lower crust (4-7 kbars) above the present Moho estimates beneath Jeju Island, where the xenoliths represent wall rocks. Following the consolidation of the xenolith lithologies, volatile- and incompatible element-enriched melt/fluid, as metasomatic agents, infiltrated through the grain boundaries and/or cracks and reacted with the preexisting anhydrous phases, which produced the metasomatic amphiboles. This volatile-enriched melt/fluid could have evolved from the initially anhydrous compositions to the volatile-saturated compositions by the active fractional crystallization in the Jeju Pleisto-Holocene magma system. This process was significant in that it was a relatively young event and played an important role in the formation of the hydrous minerals and the metasomatization of the lower continental crust, which is a plume-impacted area along the Asian continental margin. The major and trace element analyses of the mineral phases from the xenoliths were performed to define the principal geochemical characteristics of the crustal lithosphere segment represented by the studied xenoliths.
Resumo:
Interstitial water samples from Leg 129, Sites 800, 801, and 802 in the Pigafetta and Mariana basins (central western Pacific), have been analyzed for major elements, B, Li, Mn, Sr, and 87Sr/86Sr. At all sites waters show enrichment in Ca and Sr and are depleted in Mg, K, Na, SO4, B, alkalinity, and 87Sr compared to seawater. These changes are related to alteration of basaltic material into secondary smectite and zeolite and recrystallization of biogenic carbonate. Water concentration depth profiles are characterized by breaks due to the presence of barriers to diffusion such as chert layers at Sites 800 and 801 and highly cemented volcanic ash at Site 802. In Site 800, below a chert layer, concentration depth profiles are vertical and reflect slight alteration of volcanic matter, either in situ or in the upper basaltic crust. Release of interlayer water from clay minerals is likely to induce observed Cl depletions. At Site 801, two units act as diffusion barrier and isolate the volcaniclastic sediments from ocean and basement. Diagenetic alteration of volcanic matter generates a chemical signature similar to that at Site 800. Just above the basaltic crust, interstitial waters are less evolved and reflect low alteration of the crust, probably because of the presence in the sediments of layers with low diffusivities. At Site 802, in Miocene tuffs, the chemical evolution generated by diagenetic alteration is extreme (Ca = 130 mmol, 87Sr/86Sr = 0.7042 at 83 meters below seafloor) and is accompanied by an increase of the Cl content (630 mmol) due to water uptake in secondary hydrous phases. Factors that enhance this evolution are a high sediment accumulation rate, high cementation preventing diffusive exchange and the reactive composition of the sediment (basaltic glass). The chemical variation is estimated to result in the alteration of more than 20% of the volcanic matter in a nearly closed system.
Resumo:
On the basis of new bulk major and trace element (including REE) as well as Sm-Nd and Rb-Sr isotope data, used in conjunction with available geochronological data, a post-tectonic mafic igneous province and four groups of pre- to syntectonic amphibolite are distinguished in the polymetamorphic Maud Belt of western Dronning Maud Land, East Antarctica. Protoliths of the Group 1 amphibolites are interpreted as volcanic arc mafic intrusions with Archaean to Palaeoproterozoic Nd model ages and depletion in Nb and Ta. Isotopic and lithogeochemical characteristics of this earliest group of amphibolite indicate that the Maud Belt was once an active continental volcanic arc. The most likely position of this arc, for which a late Mesoproterozoic age (c. 1140 Ma) is indicated by available U-Pb single-zircon age data, was on the southeastern margin of the Kaapvaal-Grunehogna Craton. The protoliths of Group 2 amphibolites are attributed to the 1110 Ma Borgmassivet-Umkondo thermal event on the basis of comparable Nd model ages and trace element distributions. Group 3 amphibolite protoliths are characterized by mid-ocean ridge basalt-type REE patterns and low Th/Yb ratios, and they are related to Neoproterozoic extension. Group 4 amphibolite protoliths are distinguished by high Dy/Yb ratios and are attributed to a phase of syntectonic Pan-African magmatism as indicated by Rb-Sr isotope data.
Resumo:
Stable oxygen and carbon isotope measurements (d18O and d13C) of planktonic and benthic foraminifers were conducted to assess the temperature history and circulation patterns over Shatsky Rise during the Paleocene and Eocene. A record of Mg/Ca for benthic foraminifers was also constructed in order to better determine the relative influence of temperature, salinity, and/or ice volume upon the benthic d18O record. Isotopic analyses were carried out on several planktonic taxa (Acarinina, Morozovella, Globigerinatheka, Praemurica, and Subbotina) as well as several benthic taxa (Nuttalides, Oridorsalis, Cibicidoides, Gavelinella, and Lenticulina). Elemental analyses were restricted to three benthic taxa: Nuttalides, Oridorsalis, and Gavelinella. All specimens were derived from the composite sediment section recovered from Ocean Drilling Program Site 1209 on the Southern High of Shatsky Rise.
Resumo:
Distinctive light-dark color cycles in sediment beneath the Benguela Current Upwelling System indicate repetitive alternations in sediment delivery and deposition. Geochemical proxies for paleoproductivity and for depositional conditions were employed to investigate the paleoceanographic processes involved in creating these cycles in three mid-Pleistocene intervals from ODP Sites 1082 and 1084. Concentrations of total organic carbon (TOC) vary between 3.5 and 17.1%. Concentrations of CaCO3 vary inversely to TOC and Al, which suggests that both carbonate dissolution and terrigenous dilution contribute to the light-dark cycles. Opal concentrations are independent of both TOC and CaCO3, therefore eliminating diatom production and lateral transport of shelf material as causes of the light-dark cycles. d13Corg and d15Ntot values do not vary across light-dark sediment intervals, implying that the extent of relative nutrient utilization did not change. The stable d15Ntot values represent a balanced change in nitrate supply and export production and therefore indicate that productivity was elevated during deposition of the TOC-rich layers. Parallel changes in concentrations of indicator trace elements and TOC imply that changes in organic matter delivery influenced geochemical processes on the seafloor by controlling consumption of pore water oxygen. Cu, Ni, and Zn are enriched in the darker sediment as a consequence of greater organic matter delivery. Redox-sensitive metals vary due to loss (Mn and Ba) or enrichment (Mo) under reducing conditions created by TOC oxidation. Organic matter delivery impacts subsequent geochemical changes such as carbonate dissolution, sulfate reduction and the concentration of metals. Thus, export production is considered ultimately responsible for the generation of the color cycles.