948 resultados para ELECTRON-TRANSFER
Resumo:
A numerical analysis of a quantum directional coupler based on Pi-shaped electron waveguides is presented with use of the scattering-matrix method. After the optimization of the device parameters, uniform output for the two output ports and high directivity are obtained within a wide range of the electron momenta. The electron transfer in the device is found more efficient than that in the previously proposed structures. The study of the shape-dependence of transmission for the device shows that the device structure with smooth boundaries exhibits a much better performance.
Resumo:
PbS clusters in zeolite-Y have been prepared with the reaction of Pb2+-ion-exchanged zeolite-Y with Na2S in solution at room temperature. Their absorption spectra show dramatic blue shifts from that of the bulk PbS. Obvious change of both the absorption edges and peak positions upon PbS concentrations have been observed. These phenomena provide evidences that PbS clusters have been formed within the zeolite. The absorption spectra show featureless structure and have no tails near the absorption edges. As the PbS loading density becomes higher, the absorption bands become stronger and sharpen. Order PbS clusters lattice with high quality might be formed in the supercages of zeolite-Y. (C) 1996 American Institute of Physics.
Resumo:
本学位论文分为四个部分,第一部分报道了用串联质谱快速分析合成药物中的微量杂质成分以及分析中药材中的化学成分。第二部分报道了通过质谱和串联质谱发现并合成新型的PdPincer 催化剂,同时对其活性进行测试。第三部分为串联质谱自动解析软件的设计及应用。第四部分概述了应用在质谱中的各种碎裂方式。 第一部分首先总结了5-溴粉防己碱及其类似物的裂解规律,并以此为根据推测出2 个微量杂质的结构。随后针对无患子(Sapindus mukurossi Gatren.)中的皂苷成分,由ESI-QTOF 得到各个皂苷成份的高分辨质量数据进而得到其分子式,然后利用ESI-IT 电喷雾串联质谱对无患子总皂苷中各皂苷成分的结构进行进一步的鉴定。进而以同样的方式,先通过ESI-QTOF 得到黄山药(Dioscoreapanthaica)总皂苷中各个组分化合物的分子式,然后对已有的薯蓣皂苷标准品做串联质谱分析,以得到该类化合物的裂解规律并给出解析该类化合物的流程图。在此利用计算化学的方法讨论了离子的丰度与裂解活化能之间的关系。然后应用APCI-MS/MS 方法探讨了四对同分异构体和几个已知的化合物,并最后用液质联用对其进行确认,同时还给出了4 个未知化合物的可能结构。 第二部分报道通过质谱和串联质谱发现并合成新型的PdPincer 催化剂,同时对其活性进行测试。钯催化的交联反应是有机合成中C-C 键形成的最有效的方法,且硫脲是一类对空气和水都稳定的化合物,因此我们设计并合成了一系列的硫脲钯催化剂并得到了很好的催化活性。我们在对其中一类环状双硫脲化合物进行质谱实验的时候,在正离子模式下发现了反常的[M.H]+,通过串联质谱进一步确定了它是一种新型的PdPincer 结构。我们将其合成出来并通过X-ray 衍射实验确定了它的结构。同时测定其催化活性并与未形成pincer 的类似物进行比较发现该类化合物具有较宽的底物适用性。 第三部分为串联质谱自动解析软件的设计及应用。通过前面两部分的启示,独立设计开发了AuMass(1.0)。其算法是:先通过查找特殊的碎片离子,中性丢失或碎片离子质量差来确定某类化合物的骨架结构,然后利用该类化合物的自动解析流程来对其周边取代基进行确认。通过它快速地对白芍中的化学成分进行解析,并对未知的化合物进行了推测。为了增加它的解析能力,我又对其它类型的化合物裂解规律进行总结,并给出了自动解析流程。实践证明该软件具有相当好的应用价值。 第四部分综述了应用在质谱上的各类母离子的碎裂技术。这里包括了碰撞诱导裂解(CID)、光诱导碎裂(LID)、电子捕获裂解/电子转移裂解(ECD/ETD)、红外多光子解离(IRMPD)、黑体辐射解离(BIRD)和PQD 裂解技术。 This dissertation consists of four chapters. The first chapter reports the rapidanalysis of trace impurities from synthetical medicine and analysis of the chemicalconstitutents from Chinese herb medicines. The second chapter elaborates the studieson the discorvery and synthesis of new type of Pd Pincer catalyst by using MS andtandem MS together with the testing of its catalyst activity. The third chapter dwellson the designation and development of automatic tandem mass spectrometry analysissoftware. The last chapter presents a review on the dissociation technique of massspectrometry. The first chapter reports the rapid analysis of trace impurities from synthesismedicine and analysis of the chemical constitutents from Chinese herb medicines. The fission mechanism of 5-bromotetrandrine was obtained by analysis of the dissociationpathways of major product, by using which the possible structure of the two traceimpurties was assumed. There are lots of saponins in Sapindus mukurossi. Except forthe good spumescence and decontamination,it possesses the bioactivity of antigenand antitch. First of all, the high resolution mass information was obtained by ESI-QTOF. Hence the possible molecular formulars were acquired too. Then weconducted the further detection of the structures of its saponins by using ESI-ITtechnology. In the same manner, first the molecular formulars of every constituentfrom Dioscorea panthaica in total saponins were obtained by ESI-QTOF, and thenacquired the fission mechanism of this type of compounds by tandem massexperiment on a series of known and available saponins. In the same time, theanalysis flowchart was concluded. Here the relationship between the ion intensity andthe corresponding dissiociation activation energy was studied by computer chemistry.Then the four pairs of isomers were differentiated by APCI-MS/MS, as well as thecharacterization of known and unknown compounds. The assumption was confirmed by HPLC-MS/MS. Among them the possible structures of four unknown saponinswas presented. The second part was discovery and synthesis of a new type of Pd pincer catalystby MS and tandem MS. The coupling reaction catalyzed by Pd is the most effectivemethod in C-C formation in organic synthesis. Apart from that, thiourea is type ofcompounds that are stable to atmosphere and moisture. Hence we designed a series ofPd thiourea catalysts. Some of them show the excellent catalyst activity. The abnormalparent ion [M.H]+ was founded in positive ESI mode when we conduct some massspectrometry experiments on the bicyclical thiourea Pd complex. The structure wasproposed by mass and tandem mass spectrometry. Because it was a new type of pincer,we want to test its catalyst activity. So the Pd pincer was synthesized and the detailstructure was obtained by x-ray experiment. It shows the more fitness in catalysis ofSuzuki reaction by comparison with the analogue. The third chapter dwells on the design and development of automatic tandemmass spectrometry analysis software. Inspired by the former two chapters, theAuMass (version 1.0) was developed. Its algorithm is: first check the diagnostic ion,diagnostic neutral loss or diagnostic ions mass intervals in database to find out whatthe analyst’s skeleton belongs to, then identify the peripheral functional group by thecorresponding analysis flowchart. The chemical constituents of Paeonia lactiflorawere identified rapidly by using AuMass. To increase the analysis ability, the othertypes of compounds from Chinese herbs was concluded. Actually, the software isproven to have the much valuable application. The last chapter presented the review on the some kinds of fission technique ofmass spectrometry. It involves the collision induced dissociation (CID), laser induceddissociation (LID), electron capture dissociation/electron transfer dissociation(ECD/ETD), infrared multiple photons dissiociation, black body irraditiondissociation and PQD fission technique from Finnigan.
Resumo:
The collisions of the isocharged sequence ions of q=6 (C6+, N6+, O6+, F6+, Ne6+, Ar6+, and Ca6+), q=7 (F7+, Ne7+, S7+, Ar7+, and Ca7+), q=8 (F8+, Ne8+, Ar8+, and Ca8+), q=9 (F9+, Ne9+, Si9+, S9+, Ar9+, and Ca9+) and q=11 (Si11+, Ar11+, and Ca11+) with helium at the same velocities were investigated. The cross-section ratios of the double-electron transfer (DET) to the single-electron capture (SEC) sigma(DET)/sigma(SEC) and the true double-electron capture (TDC) to the double-electron transfer sigma(TDC)/sigma(DET) were measured. It shows that for different ions in an isocharged sequence, the experimental cross-section ratio sigma(DET)/sigma(SEC) varies by a factor of 3. The results confirm that the projectile core is another dominant factor besides the charge state and the collision velocity in slow (0.35-0.49v(0); v(0) denotes the Bohr velocity) highly charged ions (HCIs) with helium collisions. The experimental cross-section ratio sigma(DET)/sigma(SEC) is compared with the extended classical over-barrier model (ECBM) [A. Barany , Nucl. Instrum. Methods Phys. Res. B 9, 397 (1985)], the molecular Coulombic barrier model (MCBM) [A. Niehaus, J. Phys. B 19, 2925 (1986)], and the semiempirical scaling laws (SSL) [N. Selberg , Phys. Rev. A 54, 4127 (1996)]. It also shows that the projectile core properties affect the initial capture probabilities as well as the subsequent relaxation of the projectiles. The experimental cross-section ratio sigma(TDC)/sigma(DET) for those lower isocharged sequences is dramatically affected by the projectile core structure, while for those sufficiently highly isocharged sequences, the autoionization always dominates, hence the cross-section ratio sigma(TDC)/sigma(DET) is always small.
Resumo:
本工作采用反冲离子飞行时间技术和散射离子位置灵敏探测技术,实验研究了Sq+离子与He、H2碰撞中的多电子转移过程和分子离子的碎裂现象。研究了转移电离截面与单电子俘获截面比值和入射离子损失一个电子和两个电子的情况下,靶原子双重电离与单重电离的截面比值随入射离子能量和入射离子电荷态的变化规律,并对不同的碰撞体系的结果进行了比较。研究发现:在本工作研究的入射离子能区,对于HZ分子靶,双电子俘获自电离反应道:S2+H2→S(q-l)+2H++e-。是转移电离过程的主要贡献,而直接转移电离的贡献可以忽略;随着入射离子电荷态的增加,双电子俘获自电离的贡献增加,直接转移电离的贡献逐渐减小,但双电子俘获自电离的贡献的增加比理论预言的要慢。建立了蒙特卡罗程序模拟离子与分子碰撞中产生的具有不同的初始动能的离子碎片的飞行时间谱,深入分析和研究了Sq+与H2分子碰撞中产生的H2+的解离过程和库仑爆炸过程,以及H+碎片的能量分布。模拟结果与实验测量到的TOF谱的分析比较说明:在Sq+与H2分子碰撞实验中,库仑爆炸是产生H+的主要反应道,而氢分子离子H2+发生解离产生H+的反应道相对很弱。
Resumo:
本工作建立起了符合关联测量实验装置,包括反冲离子飞行时间谱仪、散射离子位置灵敏探测器、差分拉瓦型气体喷嘴、基于微机的多参数数据获取系统以及数据分析和处理程序。在入射离子能量在80KeV~240KeV范围内,利用该装置系统研究了Arq++He,Arq++Ne和Arq++Ar(q=8,9,11,12)碰撞体系中的多电子转移规律,实验鉴别了反应中发生的各种多电子转移过程,测量了反应截面,获得了一批新的实验数据。 对于Arq++He碰撞体系,本工作主要研究了He原子的转移电离相对截面与入射离子能量和电荷态的规律,发现相对截面在所研究能区基本与入射离子能量无关,并利用核间势垒和复合分子的经典图象,描述了此碰撞体系转移电离过程发生的两种可能途径,估计了相对截面的经典上限,发现在此碰撞体系中,转移电离过程中电子关联作用起着重要的作用。 本工作系统研究了Arq++He和Arq++Ar碰撞体系中多电子转移反应截面与入射离子能量、电荷态和反冲离子电荷态的变化规律,以及反冲离子电荷态分布。研究发现,在低能高电荷态离子与多电子靶原子碰撞反应中,碰撞系统的相对运动动能对碰撞体系中的电子转移过程基本没有贡献;系统所具有的势能是碰撞体系中电子转移和靶原子电离的主要因素;在相同的入射离子条件下,靶原子电离能对电子转移有重要影响;碰撞反应中单电子过程占主要地位,而在多电子转移过程中,转移电离过程发生的几率一般大于纯的多电子俘获几率;入射离子单电子俘获截面、总电荷交换截面与入射离子电荷态成正比关系;入射离子电荷交换截面随离子俘获电子数目的增加而单调减小;入射离子俘获一个电子时,转移电离截面随反冲离子电荷态的升高而单调下降,而入射离子俘获电子数多于一个时,转移电离截面存在极大值分布现象,而且分布宽度随入射离子电荷态的升高具有增加的趋势。 本工作在分析实验现象和分子经典库仑过垒模型MCBM的基础上,提出基于MCBM描述,把高电荷态离子与原子碰撞反应中的电子转移过程分为四阶段描述的新想法,即:入射过程中的分子化→复合分子形成→复合分子解离和中间态离子的形成→多电子激发态散射离子和靶离子向末态的自电离衰变。并依据能量守恒原理,规范了处理多电子激发态离子发生自电离衰变的规则。在此基础上,对Arq++He和Arq++Ar碰撞体系中的电子转移截面进行了理论计算,通过与实验结果的对比研究发现,对在中间态形成的多电子激发态散射离子,根据这些规则进行自电离衰变修正后计算得到的结果与实验符合很好,因此,对多电子激发态离子的自电离修正是合理的,而且多电子激发态离子的自电离衰变是低能高电荷态离子与原子碰撞反应中转移电离过程发生的主要因素。
Resumo:
Spherical gold nanoparticles (3-5 nm) undergo a surprising fragmentation without extra energy imput and are converted into ultrasmall particles (less than 1.5 nm), which is a direct result of electron transfer between gold nanoparticles and cysteine.
Resumo:
This review focuses on the synthesis, assembly, surface functionalization, as well as application of inorganic nanostructures. Electrochemical and wet- chemical methods are demonstrated to be effective approaches to make metal nanostructures under control without addition of a reducing agent or protecting agent. Owing to the unique physical and chemical properties of the nano-sized materials, novel applications are introduced using inorganic nanomaterials, such as electrocatalysis, photoelectricity, spectrochemistry, and analytical chemistry.
Resumo:
Multilayer film of laccase, poly-L-lysine (PLL) and multi-walled carbon nanotubes (MWNTs) were prepared by a layer-by-layer self-assembly technique. The results of the UV-vis spectroscopy and scanning electron microscopy studies demonstrated a uniform growth of the multilayer. The catalytic behavior of the modified electrode was investigated. The (MWNTs/PLL/laccase)(n) multilayer modified electrode catalyzed four-electron reduction of O-2 to water, without any mediator.
Resumo:
A facile magnetic control system was designed in bioelectrocatalytic process based on functionalized iron oxide particles. The iron oxide particles were modified with glucose oxidase, and ferrocene dicarboxylic acid was used as electron transfer mediator. Functionalized iron oxide particles can assemble along the direction of applied magnetic field, and the directional dependence of the assembled iron oxide particles can be utilized for device purposes. We report here how such functionalized magnetic particles are used to modulate the bioelectrocatalytic signal by changing the orientation of the applied magnetic field. (C) 2008 Elsevier B.V. All rights reserved.
Resumo:
It was found that Fe3O4 nanoparticles (Fe3O4 NPs) possess intrinsic enzyme mimetic activity similar to that found in natural peroxidase. Here, we applied Fe3O4 NPs to the construction of efficient electrochemical sensor to detect the concentration of hydrogen peroxide. The sensor was fabricated with layer-by-layer assembly of Fe3O4 NPs and poly(diallyldimethylammonium chloride) (PDDA) through the electrostatic interaction, and the multilayer film was characterized with UV-vis absorption spectra, atomic force microscopy, and cyclic voltammetry.
Resumo:
Laccase has been immobilized on the carbon nanotubes modified glassy carbon electrode surface by adsorption. As-prepared laccase retains good electrocatalytic activity to oxygen reduction by using 2,2'-azino-bis-(3-ethylbenzthiazoline-6-sulfonic acid) as the mediator. It can be used as a biosensor for the determination of catechol with broad linear range.
Resumo:
A new kind of bismuth film modified electrode to sensitively detect trace metal ions based on incorporating highly conductive ionic liquids 1-butyl-3-methyl-imidazolium hexafluorophosphate (BMIMPF6) in solid matrices at glassy carbon (GC) was investigated. Poly(sodium 4-styrenesulfonate) (PSS), silica, and Nafion were selected as the solid matrices. The electrochemical properties of the mixed films modified GC were evaluated. The electron transfer rate of Fe(CN)(6)(4-)/Fe(CN)(6)(3-) can be effectively improved at the PSS-BMIMPF6 modified GC.
Resumo:
The recently developed initiation system, the activator generated by electron transfer (AGET) was used in atom transfer radical polymerization (ATRP) to synthesize well-controlled polyacrylamide in aqueous media at 25 degrees C. The different reducing agents involved ascorbic acid and glucosa; well-controlled polymers were obtained when ascorbic acid was used as water-soluble reducing agent. The polymerizations targeted at degrees of polymerization in the range of 400 resulted in polymers with low polydispersity indices. Moreover, first order plots were linear.
Resumo:
Palladium nanoparticle-loaded carbon nanofibers (Pd/CNFs) were synthesized by the combination of electrospinning and thermal treatment processes. Scanning electron microscopy (SEM) and transmission electron microscopy (TEM) images show that spherical Pd nanoparticles (NPs) are well-dispersed on the surfaces of CNFs or embedded in CNFs. X-ray diffraction (XRD) pattern indicates that cubic phase of Pd was formed during the reduction and carbonization processes, and the presence of Pd NPs promoted the graphitization of CNFs. This nanocomposite material exhibited high electric conductivity and accelerated the electron transfer, as verified by electrochemical impedance spectroscopy (EIS) and cyclic voltammetry (CV).