645 resultados para Drosòfila melanogaster


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Circadian clocks are endogenous timers adjusting behaviour and physiology with the solar day. Synchronized circadian clocks improve fitness and are crucial for our physical and mental well-being. Visual and non-visual photoreceptors are responsible for synchronizing circadian clocks to light, but clock-resetting is also achieved by alternating day and night temperatures with only 2-4 °C difference. This temperature sensitivity is remarkable considering that the circadian clock period (~24 h) is largely independent of surrounding ambient temperatures. Here we show that Drosophila Ionotropic Receptor 25a (IR25a) is required for behavioural synchronization to low-amplitude temperature cycles. This channel is expressed in sensory neurons of internal stretch receptors previously implicated in temperature synchronization of the circadian clock. IR25a is required for temperature-synchronized clock protein oscillations in subsets of central clock neurons. Extracellular leg nerve recordings reveal temperature- and IR25a-dependent sensory responses, and IR25a misexpression confers temperature-dependent firing of heterologous neurons. We propose that IR25a is part of an input pathway to the circadian clock that detects small temperature differences. This pathway operates in the absence of known 'hot' and 'cold' sensors in the Drosophila antenna, revealing the existence of novel periphery-to-brain temperature signalling channels.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The neural mechanisms determining the timing of even simple actions, such as when to walk or rest, are largely mysterious. One intriguing, but untested, hypothesis posits a role for ongoing activity fluctuations in neurons of central action selection circuits that drive animal behavior from moment to moment. To examine how fluctuating activity can contribute to action timing, we paired high-resolution measurements of freely walking Drosophila melanogaster with data-driven neural network modeling and dynamical systems analysis. We generated fluctuation-driven network models whose outputs-locomotor bouts-matched those measured from sensory-deprived Drosophila. From these models, we identified those that could also reproduce a second, unrelated dataset: the complex time-course of odor-evoked walking for genetically diverse Drosophila strains. Dynamical models that best reproduced both Drosophila basal and odor-evoked locomotor patterns exhibited specific characteristics. First, ongoing fluctuations were required. In a stochastic resonance-like manner, these fluctuations allowed neural activity to escape stable equilibria and to exceed a threshold for locomotion. Second, odor-induced shifts of equilibria in these models caused a depression in locomotor frequency following olfactory stimulation. Our models predict that activity fluctuations in action selection circuits cause behavioral output to more closely match sensory drive and may therefore enhance navigation in complex sensory environments. Together these data reveal how simple neural dynamics, when coupled with activity fluctuations, can give rise to complex patterns of animal behavior.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In many species with internal fertilization, molecules transferred in the male ejaculate trigger and interact with physiological changes in females. It is controversial to what extent these interactions between the sexes act synergistically to mediate the female switch to a reproductive state or instead reflect sexual antagonism evolved as a by product of sexual selection on males. To address this question, we eliminated sexual selection by enforcing monogamy in populations of Drosophila melanogaster for 65 generations and then measured the expression of male seminal fluid protein genes and genes involved in the female response to mating. In the absence of sperm competition, male and female reproductive interests are perfectly aligned and any antagonism should be reduced by natural selection. Consistent with this idea, males from monogamous populations showed reduced expression of seminal fluid protein genes, 16% less on average than in polygamous males. Further, we identified 428 genes that responded to mating in females. After mating, females with an evolutionary history of monogamy exhibited lower relative expression of genes that were up regulated in response to mating and higher expression of genes that were down-regulated - in other words, their post-mating transcriptome appeared more virgin-like. Surprisingly, these genes showed a similar pattern even before mating, suggesting that monogamous females evolved to be less poised for mating and the accompanying receipt of male seminal fluid proteins. This reduced investment by both monogamous males and females in molecules involved in post-copulatory interactions points to a pervasive role of sexual conflict in shaping these interactions.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Drosophila Decapentaplegic (Dpp) has served as a paradigm to study morphogen-dependent growth control. However, the role of a Dpp gradient in tissue growth remains highly controversial. Two fundamentally different models have been proposed: the 'temporal rule' model suggests that all cells of the wing imaginal disc divide upon a 50% increase in Dpp signalling, whereas the 'growth equalization model' suggests that Dpp is only essential for proliferation control of the central cells. Here, to discriminate between these two models, we generated and used morphotrap, a membrane-tethered anti-green fluorescent protein (GFP) nanobody, which enables immobilization of enhanced (e)GFP::Dpp on the cell surface, thereby abolishing Dpp gradient formation. We find that in the absence of Dpp spreading, wing disc patterning is lost; however, lateral cells still divide at normal rates. These data are consistent with the growth equalization model, but do not fit a global temporal rule model in the wing imaginal disc.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The scaling of body parts is central to the expression of morphology across body sizes and to the generation of morphological diversity within and among species. Although patterns of scaling-relationship evolution have been well documented for over one hundred years, little is known regarding how selection acts to generate these patterns. In part, this is because it is unclear the extent to which the elements of log-linear scaling relationships-the intercept or mean trait size and the slope-can evolve independently. Here, using the wing-body size scaling relationship in Drosophila melanogaster as an empirical model, we use artificial selection to demonstrate that the slope of a morphological scaling relationship between an organ (the wing) and body size can evolve independently of mean organ or body size. We discuss our findings in the context of how selection likely operates on morphological scaling relationships in nature, the developmental basis for evolved changes in scaling, and the general approach of using individual-based selection experiments to study the expression and evolution of morphological scaling.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Clines in phenotypes and genotype frequencies across environmental gradients are commonly taken as evidence for spatially varying selection. Classical examples include the latitudinal clines in various species of Drosophila, which often occur in parallel fashion on multiple continents. Today, genomewide analysis of such clinal systems provides a fantastic opportunity for unravelling the genetics of adaptation, yet major challenges remain. A well-known but often neglected problem is that demographic processes can also generate clinality, independent of or coincident with selection. A closely related issue is how to identify true genic targets of clinal selection. In this issue of Molecular Ecology, three studies illustrate these challenges and how they might be met. Bergland et al. report evidence suggesting that the well-known parallel latitudinal clines in North American and Australian D. melanogaster are confounded by admixture from Africa and Europe, highlighting the importance of distinguishing demographic from adaptive clines. In a companion study, Machado et al. provide the first genomic comparison of latitudinal differentiation in D. melanogaster and its sister species D. simulans. While D. simulans is less clinal than D. melanogaster, a significant fraction of clinal genes is shared between both species, suggesting the existence of convergent adaptation to clinaly varying selection pressures. Finally, by drawing on several independent sources of evidence, Bo?ičević et al. identify a functional network of eight clinal genes that are likely involved in cold adaptation. Together, these studies remind us that clinality does not necessarily imply selection and that separating adaptive signal from demographic noise requires great effort and care.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

When analyzing the chromosomal polymorphism of D. subobscura natural populations it is assumed that the information provided by wild males and sons of wild females is equivalent. Thus, using both in the analysis it is possible to increase the sample size. However, it is important to verify whether there are significant differences between both groups or not. The aim of this research has been to statistically compare the results of chromosomal polymorphism of both groups. We have used data from Avala Mountain (Serbia) where D. subobscura flies were collected from the 30th May to the 5th June 2011. Avala is located 18 km south of Belgrade and the trapping place is a forest with polydominant communities of Fagetum submontanum Table 1. Number and percentage of adult flies collected in Font Groga (Barcelona, Spain) on 9th October 2013. Males and sons of wild females were crossed with virgin females of the Küsnacht strain. Third instar larvae from F1 were dissected to obtain the salivary glands and the polytene chromosomes were stained and squashed in aceto-orcein solution. No significant differences were observed for any chromosome of the karyotype: A (p-value = 0.485), J (p-value = 0.230), U (p-value =0.572), E (p-value = 0.536), and O (p-value = 0.338). Thus, it seems that the two groups can be grouped together to obtain the chromosomal polymorphism of the population.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A new sample of drosophilids was obtained from Font Groga (Barcelona) on 9th October 2013. Flies were netted over 12 baits containing fermenting bananas placed along a trail from 4 to 7 pm. The number of flies classified according to species and sex is presented in Table 1. The most abundant species is D. subobscura (62.60%). This is expected because the sample was obtained during its autumn peak of expansion. Also interesting is to find again D. suzukii, and in a percentage similar (9.20%) to that obtained in 2012 sample. This species invaded recently many European regions and seems it is well established. We have finally estimated the species diversity using H" (Shannon diversity index) and J (Shannon uniformity index). The values obtained were 0.990 and 0.615, respectively. They are similar to those estimates obtained in the same site by Calabria in autumn 2007 and higher than those of Canals et al. in late autumn 2012.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Using a well-adapted Drosophila subobscura population (Avala, Serbia), a drastic experiment of inbreeding was carried out to assess whether the expected level of homozygosity could be reached or if other evolutionary forces affected the process. In general, no significant changes of inversion (or arrangement) frequencies were detected after 12 brother sister mating generations. Furthermore, no significant differences were obtained between observed and expected (under the inbreeding model) karyotypic frequencies. Thus, these results seemed to indicate that the main evolutionary factor in the experiment was inbreeding. However, in the G12 generation, complete chromosomal fixation was reached only in two out of the eight final inbred lines. In these lines, the chromosomal compositions were difficult to interpret, but they could be likely a consequence of adaptation to particular laboratory conditions (constant 18 °C, food, light period, etc.). Finally, in a second experiment, the inbred lines presented higher fertility at 18 °C than at 13 °C. Also, there was a significant line effect on fertility: inbred line number 6 (A1, J1, U1+2; U1+2+6, E8, and O3+4+7) presented the highest values, which maybe the result of an adaptation to laboratory conditions. Thus, the results obtained in our experiments reflect the adaptive potential of D. subobscura inversions.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Myriapods (e.g., centipedes and millipedes) display a simple homonomous body plan relative to other arthropods. All members of the class are terrestrial, but they attained terrestriality independently of insects. Myriapoda is the only arthropod class not represented by a sequenced genome. We present an analysis of the genome of the centipede Strigamia maritima. It retains a compact genome that has undergone less gene loss and shuffling than previously sequenced arthropods, and many orthologues of genes conserved from the bilaterian ancestor that have been lost in insects. Our analysis locates many genes in conserved macro-synteny contexts, and many small-scale examples of gene clustering. We describe several examples where S. maritima shows different solutions from insects to similar problems. The insect olfactory receptor gene family is absent from S. maritima, and olfaction in air is likely effected by expansion of other receptor gene families. For some genes S. maritima has evolved paralogues to generate coding sequence diversity, where insects use alternate splicing. This is most striking for the Dscam gene, which in Drosophila generates more than 100,000 alternate splice forms, but in S. maritima is encoded by over 100 paralogues. We see an intriguing linkage between the absence of any known photosensory proteins in a blind organism and the additional absence of canonical circadian clock genes. The phylogenetic position of myriapods allows us to identify where in arthropod phylogeny several particular molecular mechanisms and traits emerged. For example, we conclude that juvenile hormone signalling evolved with the emergence of the exoskeleton in the arthropods and that RR-1 containing cuticle proteins evolved in the lineage leading to Mandibulata. We also identify when various gene expansions and losses occurred. The genome of S. maritima offers us a unique glimpse into the ancestral arthropod genome, while also displaying many adaptations to its specific life history.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A review of our recent work on the cromosomal evolution of the Drosophila repleta species group is presented. Most studies have focused on the buzzatii species complex, a monophyletic set of 12 species which inhabit the deserts of South America and the West Indies. A statistical analysis of the length and breakpoint distribution of the 86 paracentric inversions observed in this complex has shown that inversion length is a selected trait. Rare inversions are usually small while evolutionary successful inversions, fixed and polymorphic, are predominantly of medium size. There is also a negative correlation between length and number of inversions per species. Finally, the distribution of inversion breakpoints along chromosome 2 is non-random, with chromosomal regions which accumulate up to 8 breakpoints (putative "hot spots"). Comparative gene mapping has also been used to investigate the molecular organization and evolution of chromosomes. Using in situ hybridization, 26 genes have been precisely located on the salivary gland chromosomes of D. repleta and D. buzzatii; another nine have been tentatively identified. The results are fully consistent with the currently accepted chromosomal homologies between D. repleta and D. melanogaster, and no evidence for reciprocal translocations or pericentric inversions has been found. The comparison of the gene map of D. repleta chromosome 2 with that of the homologous chromosome 3R of D. melanogaster shows an extensive reorganization via paracentric inversions and allows to estimate an evolution rate of ~1 inversion fixed per million years for this chromosome

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The binding capacity of concanavalin A (Con A) to condensed euchromatin and heterochromatin was investigated in chicken erythrocyte nuclei (CEN), mouse liver cells, Zea mays mays meristematic cells and Drosophila melanogaster polytene chromosomes after 4 N HCl hydrolysis to determine whether binding was preferentially occurring in bands and heterochromatin. Dry mass (DM) variation was investigated in CEN by interference microscopy. Feulgen and Con A reactions were employed for all materials to correlate the loci of the two reactions. Quantifications and topological verifications were carried out by video image analysis (high performance cytometry). It was observed that 4 N HCl hydrolysis caused an important DM loss in CEN leaving a level corresponding to the average DNA DM content. In this material, Con A binding was restricted to the nuclear envelope, which reinforces the idea of the absence of a nuclear matrix in these cells. The other cell types exhibited a correspondence of Feulgen-positive and Con A-reactive areas. The Con A reaction was highly positive in the condensed chromatin areas and heterochromatin. This fact led us to speculate that Con A-positive proteins may play a role in the chromatin condensation mechanism, endowing this structure with physico-chemical stability towards acid hydrolysis and contributing to its rheological properties.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Centromere function requires the proper coordination of several subfunctions, such as kinetochore assembly, sister chromatid cohesion, binding of kinetochore microtubules, orientation of sister kinetochores to opposite spindle poles, and their movement towards the spindle poles. Centromere structure appears to be organized in different, separable domains in order to accomplish these functions. Despite the conserved nature of centromere functions, the molecular genetic definition of the DNA sequences that form a centromere in the yeasts Saccharomyces cerevisiae and Schizosaccharomyces pombe, in the fruit fly Drosophila melanogaster, and in humans has revealed little conservation at the level of centromere DNA sequences. Also at the protein level few centromere proteins are conserved in all of these four organisms and many are unique to the different organisms. The recent analysis of the centromere structure in the yeast S. pombe by electron microscopy and detailed immunofluorescence microscopy of Drosophila centromeres have brought to light striking similarities at the overall structural level between these centromeres and the human centromere. The structural organization of the centromere is generally multilayered with a heterochromatin domain and a central core/inner plate region, which harbors the outer plate structures of the kinetochore. It is becoming increasingly clear that the key factors for assembly and function of the centromere structure are the specialized histones and modified histones which are present in the centromeric heterochromatin and in the chromatin of the central core. Thus, despite the differences in the DNA sequences and the proteins that define a centromere, there is an overall structural similarity between centromeres in evolutionarily diverse eukaryotes.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The establishment of dorsal-ventral polarity in Drosophila is a complex process which involves the action of maternal and zygotically expressed genes. Interspecific differences in the expression pattern of some of these genes have been described in other species. Here we present the expression of dorsal-ventral genes during early embryogenesis in the lower dipteran Rhynchosciara americana. The expression of four genes, the ventralizing genes snail (sna) and twist (twi) and the dorsalizing genes decapentaplegic (dpp) and zerknüllt (zen), was investigated by whole-mount in situ hybridization. Sense and antisense mRNA were transcribed in vitro using UTP-digoxigenin and hybridized at 55°C with dechorionated fixed embryos. Staining was obtained with anti-digoxigenin alkaline phosphatase-conjugated antibody revealed with NBT-BCIP solution. The results showed that, in general, the spatial-temporal expression of R. americana dorsal-ventral genes is similar to that observed in Drosophila, where twi and sna are restricted to the ventral region, while dpp and zen are expressed in the dorsal side. The differences encountered were subtle and probably represent a particular aspect of dorsal-ventral axis determination in R. americana. In this lower dipteran sna is expressed slightly later than twi and dpp expression is expanded over the lateral ectoderm during cellular blastoderm stage. These data suggest that the establishment of dorsal-ventral polarity in R. americana embryos follows a program similar to that observed in Drosophila melanogaster.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The glycosylation of glycoconjugates and the biosynthesis of polysaccharides depend on nucleotide-sugars which are the substrates for glycosyltransferases. A large proportion of these enzymes are located within the lumen of the Golgi apparatus as well as the endoplasmic reticulum, while many of the nucleotide-sugars are synthesized in the cytosol. Thus, nucleotide-sugars are translocated from the cytosol to the lumen of the Golgi apparatus and endoplasmic reticulum by multiple spanning domain proteins known as nucleotide-sugar transporters (NSTs). These proteins were first identified biochemically and some of them were cloned by complementation of mutants. Genome and expressed sequence tag sequencing allowed the identification of a number of sequences that may encode for NSTs in different organisms. The functional characterization of some of these genes has shown that some of them can be highly specific in their substrate specificity while others can utilize up to three different nucleotide-sugars containing the same nucleotide. Mutations in genes encoding for NSTs can lead to changes in development in Drosophila melanogaster or Caenorhabditis elegans, as well as alterations in the infectivity of Leishmania donovani. In humans, the mutation of a GDP-fucose transporter is responsible for an impaired immune response as well as retarded growth. These results suggest that, even though there appear to be a fair number of genes encoding for NSTs, they are not functionally redundant and seem to play specific roles in glycosylation.