906 resultados para Dripping irrigation
Resumo:
This study presents water flow (WF) into soil from several pitchers buried in the soil up to their neck and filled with water,under natural atmospheric conditions for a period of two years. Variation in daily WF into soil indicated a direct correlation with moisture deficit (MD) in atmosphere. WF increases linearly with MD for non rainy days. WF without hydraulic head through all pots varied in the order air>soil>water. Base line flow in water with respect to air was < 5%. WF for pots with hydraulic head was also in the order air>soil>water, but with significant increase in WF. Hydraulic conductivity Ks was in the order air>soil>water.Ks in water was independent of MD, whereas for air and soil, Ks increased with MD. Thus total WF is partially under hydraulic head and partly due to pull effect through capillary pores on pot wall either due to MD in air or prevailing soil water tension in soil.
Resumo:
In this paper cost sharing problems are considered. We focus on problems given by rooted trees, we call these problems cost-tree problems, and on the induced transferable utility cooperative games, called irrigation games. A formal notion of irrigation games is introduced, and the characterization of the class of these games is provided. The well-known class of airport games Littlechild and Thompson (1977) is a subclass of irrigation games. The Shapley value Shapley (1953) is probably the most popular solution concept for transferable utility cooperative games. Dubey (1982) and Moulin and Shenker (1992) show respectively, that Shapley's Shapley (1953) and Young (1985)'s axiomatizations of the Shapley value are valid on the class of airport games. In this paper we show that Dubey (1982)'s and Moulin and Shenker (1992)'s results can be proved by applying Shapley (1953)'s and Young (1985)'s proofs, that is those results are direct consequences of Shapley (1953)'s and Young (1985)'s results. Furthermore, we extend Dubey (1982)'s and Moulin and Shenker (1992)'s results to the class of irrigation games, that is we provide two characterizations of the Shapley value for cost sharing problems given by rooted trees. We also note that for irrigation games the Shapley value is always stable, that is it is always in the core Gillies (1959).
Resumo:
Acknowledgements This work was funded by Natural Science Foundation of China under grant numbers of 41071337 and 40830528 and jointly by the Priority Academic Program Development of Jiangsu Higher Education Institutions, China.
Resumo:
Conventional wisdom in many agricultural systems across the world is that farmers cannot, will not, or should not pay the full costs associated with surface water delivery. Across Organisation for Economic Co-operation and Development (OECD) countries, only a handful can claim complete recovery of operation, maintenance, and capital costs; across Central and South Asia, fees are lower still, with farmers in Nepal, India, and Kazakhstan paying fractions of a U.S. penny for a cubic meter of water. In Pakistan, fees amount to roughly USD 1-2 per acre per season. However, farmers in Pakistan spend orders of magnitude more for diesel fuel to pump groundwater each season, suggesting a latent willingness to spend for water that, under the right conditions, could potentially be directed toward water-use fees for surface water supply. Although overall performance could be expected to improve with greater cost recovery, asymmetric access to water in canal irrigation systems leaves the question open as to whether those benefits would be equitably shared among all farmers in the system. We develop an agent-based model (ABM) of a small irrigation command to examine efficiency and equity outcomes across a range of different cost structures for the maintenance of the system, levels of market development, and assessed water charges. We find that, robust to a range of different cost and structural conditions, increased water charges lead to gains in both efficiency and concomitant improvements in equity as investments in canal infrastructure and system maintenance improve the conveyance of water resources further down watercourses. This suggests that, under conditions in which (1) farmers are currently spending money to pump groundwater to compensate for a failing surface water system, and (2) there is the possibility that through initial investment to provide perceptibly better water supply, genuine win-win solutions can be attained through higher water-use fees to beneficiary farmers.
Resumo:
Water quality of parking lot (~1,858 m2) stormwater runoff and its treated effluent flow were analyzed for total phosphorus (TP), total nitrogen (TN), total suspended solids (TSS), electrical conductivity (EC), copper, lead and zinc. The novel system under investigation, located at the University of Maryland, College Park, Maryland, includes a standard bioretention facility, underdrained to a cistern to store treated stormwater, and pumped to a vegetable garden for irrigation. The site abstraction, the average bioretention abstraction, and bowl volumes were estimated to be 8500, 4378, and 895 L, respectively; this indicates that rain events of more than 0.45 cm are necessary to produce runoff and more than 0.75 cm will produce system overflow. The cistern water quality indicates good-to-excellent treatment by the system. Compared to local tap water, cistern water has lower concentrations of TP, TN, EC (non-winter), copper, and zinc, indicating a good water source for irrigation.
Resumo:
Water used for irrigation in semiarid regions of the world is not always of good quality, and may contain salts levels that inhibit plants growth. This study was conducted to evaluate the growth of papaya ( Carica papaya L.) ‘Golden’ seedlings irrigated with saline water in soil with and without bovine biofertilizer produced by anaerobic fermentation of a mixture of fresh bovine manure and water. The experiment was carried out in Areia County, Paraiba State, Brazil. Treatments were distributed in randomized blocks using a factorial design 5 × 2 relative to five salinity levels in irrigation water of 0.5, 1.0, 2.0, 3.0 and 4.0 dS m-1 in soil with and without bovine biofertilizer, corresponding to 10% of the substrate volume. At 90 d after emergence (DAE), both the electrical conductivity (EC) in soil saturation extract, biometric growth and DM production of papaya seedlings were evaluated. Increased salinity from 0.5 to 4.0 dS m-1 raised, within 90 DAE, soil EC of saturation extract (ECse) from 1.19 to 3.95 dS m-1 and from 1.23 to 3.63 dS m-1 in treatments with and without bovine biofertilizer, respectively. Also, the increase in water salinity from 0.5 dS m-1 to the estimated maximum values ranging from 1.46 to 2.13 dS m-1 stimulated seedling height to 11.42 and 18.72 cm in soil with and without bovine biofertilizer, respectively. Higher salinity levels in irrigation water increased soil salinity levels to values that inhibited both growth and quality of papaya seedlings, but with less severity when treated with bovine biofertilizer.