921 resultados para Document classification,Naive Bayes classifier,Verb-object pairs


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Writer identification consists in determining the writer of a piece of handwriting from a set of writers. In this paper we present a system for writer identification in old handwritten music scores which uses only music notation to determine the author. The steps of the proposed system are the following. First of all, the music sheet is preprocessed for obtaining a music score without the staff lines. Afterwards, four different methods for generating texture images from music symbols are applied. Every approach uses a different spatial variation when combining the music symbols to generate the textures. Finally, Gabor filters and Grey-scale Co-ocurrence matrices are used to obtain the features. The classification is performed using a k-NN classifier based on Euclidean distance. The proposed method has been tested on a database of old music scores from the 17th to 19th centuries, achieving encouraging identification rates.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In this paper, a computer-aided diagnostic (CAD) system for the classification of hepatic lesions from computed tomography (CT) images is presented. Regions of interest (ROIs) taken from nonenhanced CT images of normal liver, hepatic cysts, hemangiomas, and hepatocellular carcinomas have been used as input to the system. The proposed system consists of two modules: the feature extraction and the classification modules. The feature extraction module calculates the average gray level and 48 texture characteristics, which are derived from the spatial gray-level co-occurrence matrices, obtained from the ROIs. The classifier module consists of three sequentially placed feed-forward neural networks (NNs). The first NN classifies into normal or pathological liver regions. The pathological liver regions are characterized by the second NN as cyst or "other disease." The third NN classifies "other disease" into hemangioma or hepatocellular carcinoma. Three feature selection techniques have been applied to each individual NN: the sequential forward selection, the sequential floating forward selection, and a genetic algorithm for feature selection. The comparative study of the above dimensionality reduction methods shows that genetic algorithms result in lower dimension feature vectors and improved classification performance.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The delineation of shifting cultivation landscapes using remote sensing in mountainous regions is challenging. On the one hand, there are difficulties related to the distinction of forest and fallow forest classes as occurring in a shifting cultivation landscape in mountainous regions. On the other hand, the dynamic nature of the shifting cultivation system poses problems to the delineation of landscapes where shifting cultivation occurs. We present a two-step approach based on an object-oriented classification of Advanced Land Observing Satellite, Advanced Visible and Near-Infrared Spectrometer (ALOS AVNIR) and Panchromatic Remote-sensing Instrument for Stereo Mapping (ALOS PRISM) data and landscape metrics. When including texture measures in the object-oriented classification, the accuracy of forest and fallow forest classes could be increased substantially. Based on such a classification, landscape metrics in the form of land cover class ratios enabled the identification of crop-fallow rotation characteristics of the shifting cultivation land use practice. By classifying and combining these landscape metrics, shifting cultivation landscapes could be delineated using a single land cover dataset.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

PURPOSE: To develop and implement a method for improved cerebellar tissue classification on the MRI of brain by automatically isolating the cerebellum prior to segmentation. MATERIALS AND METHODS: Dual fast spin echo (FSE) and fluid attenuation inversion recovery (FLAIR) images were acquired on 18 normal volunteers on a 3 T Philips scanner. The cerebellum was isolated from the rest of the brain using a symmetric inverse consistent nonlinear registration of individual brain with the parcellated template. The cerebellum was then separated by masking the anatomical image with individual FLAIR images. Tissues in both the cerebellum and rest of the brain were separately classified using hidden Markov random field (HMRF), a parametric method, and then combined to obtain tissue classification of the whole brain. The proposed method for tissue classification on real MR brain images was evaluated subjectively by two experts. The segmentation results on Brainweb images with varying noise and intensity nonuniformity levels were quantitatively compared with the ground truth by computing the Dice similarity indices. RESULTS: The proposed method significantly improved the cerebellar tissue classification on all normal volunteers included in this study without compromising the classification in remaining part of the brain. The average similarity indices for gray matter (GM) and white matter (WM) in the cerebellum are 89.81 (+/-2.34) and 93.04 (+/-2.41), demonstrating excellent performance of the proposed methodology. CONCLUSION: The proposed method significantly improved tissue classification in the cerebellum. The GM was overestimated when segmentation was performed on the whole brain as a single object.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Venous malformations (VMs) are the most common vascular developmental anomalies (birth defects) . These defects are caused by developmental arrest of the venous system during various stages of embryogenesis. VMs remain a difficult diagnostic and therapeutic challenge due to the wide range of clinical presentations, unpredictable clinical course, erratic response to the treatment with high recurrence/persistence rates, high morbidity following non-specific conventional treatment, and confusing terminology. The Consensus Panel reviewed the recent scientific literature up to the year 2013 to update a previous IUP Consensus (2009) on the same subject. ISSVA Classification with special merits for the differentiation between the congenital vascular malformation (CVM) and vascular tumors was reinforced with an additional review on syndrome-based classification. A "modified" Hamburg classification was adopted to emphasize the importance of extratruncular vs. truncular sub-types of VMs. This incorporated the embryological origin, morphological differences, unique characteristics, prognosis and recurrence rates of VMs based on this embryological classification. The definition and classification of VMs were strengthened with the addition of angiographic data that determines the hemodynamic characteristics, the anatomical pattern of draining veins and hence the risk of complication following sclerotherapy. The hemolymphatic malformations, a combined condition incorporating LMs and other CVMs, were illustrated as a separate topic to differentiate from isolated VMs and to rectify the existing confusion with name-based eponyms such as Klippel-Trenaunay syndrome. Contemporary concepts on VMs were updated with new data including genetic findings linked to the etiology of CVMs and chronic cerebrospinal venous insufficiency. Besides, newly established information on coagulopathy including the role of D-Dimer was thoroughly reviewed to provide guidelines on investigations and anticoagulation therapy in the management of VMs. Congenital vascular bone syndrome resulting in angio-osteo-hyper/hypotrophy and (lateral) marginal vein was separately reviewed. Background data on arterio-venous malformations was included to differentiate this anomaly from syndrome-based VMs. For the treatment, a new section on laser therapy and also a practical guideline for follow up assessment were added to strengthen the management principle of the multidisciplinary approach. All other therapeutic modalities were thoroughly updated to accommodate a changing concept through the years.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Hepatocellular carcinoma (HCC) is one of the commonest causes of death from cancer. A plethora of metabolomic investigations of HCC have yielded molecules in biofluids that are both up- and down-regulated but no real consensus has emerged regarding exploitable biomarkers for early detection of HCC. We report here a different approach, a combined transcriptomics and metabolomics study of energy metabolism in HCC. A panel of 31 pairs of HCC tumors and corresponding nontumor liver tissues from the same patients was investigated by gas chromatography-mass spectrometry (GCMS)-based metabolomics. HCC was characterized by ∼2-fold depletion of glucose, glycerol 3- and 2-phosphate, malate, alanine, myo-inositol, and linoleic acid. Data are consistent with a metabolic remodeling involving a 4-fold increase in glycolysis over mitochondrial oxidative phosphorylation. A second panel of 59 HCC that had been typed by transcriptomics and classified in G1 to G6 subgroups was also subjected to GCMS tissue metabolomics. No differences in glucose, lactate, alanine, glycerol 3-phosphate, malate, myo-inositol, or stearic acid tissue concentrations were found, suggesting that the Wnt/β-catenin pathway activated by CTNNB1 mutation in subgroups G5 and G6 did not exhibit specific metabolic remodeling. However, subgroup G1 had markedly reduced tissue concentrations of 1-stearoylglycerol, 1-palmitoylglycerol, and palmitic acid, suggesting that the high serum α-fetoprotein phenotype of G1, associated with the known overexpression of lipid catabolic enzymes, could be detected through metabolomics as increased lipid catabolism. Conclusion: Tissue metabolomics yielded precise biochemical information regarding HCC tumor metabolic remodeling from mitochondrial oxidation to aerobic glycolysis and the impact of molecular subtypes on this process.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Well-known data mining algorithms rely on inputs in the form of pairwise similarities between objects. For large datasets it is computationally impossible to perform all pairwise comparisons. We therefore propose a novel approach that uses approximate Principal Component Analysis to efficiently identify groups of similar objects. The effectiveness of the approach is demonstrated in the context of binary classification using the supervised normalized cut as a classifier. For large datasets from the UCI repository, the approach significantly improves run times with minimal loss in accuracy.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The diagnostic approach to vascular anomalies should include the distinction between vascular tumors (i.e. hemangiomas) and congential vascular malformations (CVMs). This step is based more on history and clinical examination rather than on instrumental evaluation. In children Duplex ultrasound and histology can be helpful to separate hypervasularized tumors from CVMs. Appropriate record of objective measures as size or flow volume is required in order to evaluate the progress of the pathology and/or to assess the results of adopted therapeutic interventions. The anatomic, pathological and hemodynamic characteristics, the secondary effects on the surrounding tissues and the systemic manifestations should be defined. Basic diagnostic tools are Duplex sonography followed by MRI or CT scanning. The definition of the vascular anomaly should be according to the Hamburg classification and should separate vascular tumors from vacular malformations followed by separation of high flow from low flow CVMs. Diagnostic investigations are best undertaken at centers where subsequent therapeutic interventions will be performed.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Over the last decade, a plethora of computer-aided diagnosis (CAD) systems have been proposed aiming to improve the accuracy of the physicians in the diagnosis of interstitial lung diseases (ILD). In this study, we propose a scheme for the classification of HRCT image patches with ILD abnormalities as a basic component towards the quantification of the various ILD patterns in the lung. The feature extraction method relies on local spectral analysis using a DCT-based filter bank. After convolving the image with the filter bank, q-quantiles are computed for describing the distribution of local frequencies that characterize image texture. Then, the gray-level histogram values of the original image are added forming the final feature vector. The classification of the already described patches is done by a random forest (RF) classifier. The experimental results prove the superior performance and efficiency of the proposed approach compared against the state-of-the-art.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Activities of daily living (ADL) are important for quality of life. They are indicators of cognitive health status and their assessment is a measure of independence in everyday living. ADL are difficult to reliably assess using questionnaires due to self-reporting biases. Various sensor-based (wearable, in-home, intrusive) systems have been proposed to successfully recognize and quantify ADL without relying on self-reporting. New classifiers required to classify sensor data are on the rise. We propose two ad-hoc classifiers that are based only on non-intrusive sensor data. METHODS: A wireless sensor system with ten sensor boxes was installed in the home of ten healthy subjects to collect ambient data over a duration of 20 consecutive days. A handheld protocol device and a paper logbook were also provided to the subjects. Eight ADL were selected for recognition. We developed two ad-hoc ADL classifiers, namely the rule based forward chaining inference engine (RBI) classifier and the circadian activity rhythm (CAR) classifier. The RBI classifier finds facts in data and matches them against the rules. The CAR classifier works within a framework to automatically rate routine activities to detect regular repeating patterns of behavior. For comparison, two state-of-the-art [Naïves Bayes (NB), Random Forest (RF)] classifiers have also been used. All classifiers were validated with the collected data sets for classification and recognition of the eight specific ADL. RESULTS: Out of a total of 1,373 ADL, the RBI classifier correctly determined 1,264, while missing 109 and the CAR determined 1,305 while missing 68 ADL. The RBI and CAR classifier recognized activities with an average sensitivity of 91.27 and 94.36%, respectively, outperforming both RF and NB. CONCLUSIONS: The performance of the classifiers varied significantly and shows that the classifier plays an important role in ADL recognition. Both RBI and CAR classifier performed better than existing state-of-the-art (NB, RF) on all ADL. Of the two ad-hoc classifiers, the CAR classifier was more accurate and is likely to be better suited than the RBI for distinguishing and recognizing complex ADL.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Smart homes for the aging population have recently started attracting the attention of the research community. The "health state" of smart homes is comprised of many different levels; starting with the physical health of citizens, it also includes longer-term health norms and outcomes, as well as the arena of positive behavior changes. One of the problems of interest is to monitor the activities of daily living (ADL) of the elderly, aiming at their protection and well-being. For this purpose, we installed passive infrared (PIR) sensors to detect motion in a specific area inside a smart apartment and used them to collect a set of ADL. In a novel approach, we describe a technology that allows the ground truth collected in one smart home to train activity recognition systems for other smart homes. We asked the users to label all instances of all ADL only once and subsequently applied data mining techniques to cluster in-home sensor firings. Each cluster would therefore represent the instances of the same activity. Once the clusters were associated to their corresponding activities, our system was able to recognize future activities. To improve the activity recognition accuracy, our system preprocessed raw sensor data by identifying overlapping activities. To evaluate the recognition performance from a 200-day dataset, we implemented three different active learning classification algorithms and compared their performance: naive Bayesian (NB), support vector machine (SVM) and random forest (RF). Based on our results, the RF classifier recognized activities with an average specificity of 96.53%, a sensitivity of 68.49%, a precision of 74.41% and an F-measure of 71.33%, outperforming both the NB and SVM classifiers. Further clustering markedly improved the results of the RF classifier. An activity recognition system based on PIR sensors in conjunction with a clustering classification approach was able to detect ADL from datasets collected from different homes. Thus, our PIR-based smart home technology could improve care and provide valuable information to better understand the functioning of our societies, as well as to inform both individual and collective action in a smart city scenario.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In sports games, it is often necessary to perceive a large number of moving objects (e.g., the ball and players). In this context, the role of peripheral vision for processing motion information in the periphery is often discussed especially when motor responses are required. In an attempt to test the capability of using peripheral vision in those sports-games situations, a Multiple-Object-Tracking task that requires to track a certain number of targets amidst distractors, was chosen to determine the sensitivity of detecting target changes with peripheral vision only. Participants’ primary task was to recall four targets (out of 10 rectangular stimuli) after six seconds of quasi-random motion. As a second task, a button had to be pressed if a target change occurred (Exp 1: stop vs. form change to a diamond for 0.5 s; Exp 2: stop vs. slowdown for 0.5 s). Eccentricities of changes (5-10° vs. 15-20°) were manipulated, decision accuracy (recall and button press correct), motor response time and saccadic reaction time (change onset to saccade onset) were calculated and eye-movements were recorded. Results show that participants indeed used peripheral vision to detect changes, because either no or very late saccades to the changed target were executed in correct trials. Moreover, a saccade was more often executed when eccentricities were small. Response accuracies were higher and response times were lower in the stop conditions of both experiments while larger eccentricities led to higher response times in all conditions. Summing up, it could be shown that monitoring targets and detecting changes can be processed by peripheral vision only and that a monitoring strategy on the basis of peripheral vision may be the optimal one as saccades may be afflicted with certain costs. Further research is planned to address the question whether this functionality is also evident in sports tasks.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Until today, most of the documentation of forensic relevant medical findings is limited to traditional 2D photography, 2D conventional radiographs, sketches and verbal description. There are still some limitations of the classic documentation in forensic science especially if a 3D documentation is necessary. The goal of this paper is to demonstrate new 3D real data based geo-metric technology approaches. This paper present approaches to a 3D geo-metric documentation of injuries on the body surface and internal injuries in the living and deceased cases. Using modern imaging methods such as photogrammetry, optical surface and radiological CT/MRI scanning in combination it could be demonstrated that a real, full 3D data based individual documentation of the body surface and internal structures is possible in a non-invasive and non-destructive manner. Using the data merging/fusing and animation possibilities, it is possible to answer reconstructive questions of the dynamic development of patterned injuries (morphologic imprints) and to evaluate the possibility, that they are matchable or linkable to suspected injury-causing instruments. For the first time, to our knowledge, the method of optical and radiological 3D scanning was used to document the forensic relevant injuries of human body in combination with vehicle damages. By this complementary documentation approach, individual forensic real data based analysis and animation were possible linking body injuries to vehicle deformations or damages. These data allow conclusions to be drawn for automobile accident research, optimization of vehicle safety (pedestrian and passenger) and for further development of crash dummies. Real 3D data based documentation opens a new horizon for scientific reconstruction and animation by bringing added value and a real quality improvement in forensic science.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The classification of neuroendocrine neoplasms (NENs) has been evolving steadily over the last decades. Important prognostic factors of NENs are their proliferative activity and presence/absence of necrosis. These factors are reported in NENs of all body sites; however, the terminology as well as the exact rules of classification differ according to the location of the primary tumor. Only in gastroenteropancreatic (GEP) NENs a formal grading is performed. This grading is based on proliferation assessed by the mitotic count and/or Ki-67 proliferation index. In the lung, NEN grading is an intrinsic part of the tumor designation with typical carcinoids corresponding to neuroendocrine tumor (NET) G1 and atypical carcinoids to NET G2; however, the presence or absence of necrotic foci is as important as proliferation for the differentiation between typical and atypical carcinoids. Immunohistochemical markers can be used to demonstrate neuroendocrine differentiation. Synaptophysin and chromogranin A are, to date, the most reliable and most commonly used for this purpose. Beyond this, other markers can be helpful, for example in the situation of a NET metastasis of unknown primary, where a hormonal profile or a panel of transcription factors can give hints to the primary site. Many immunohistochemical markers have been shown to correlate with prognosis but are not used in clinical practice, for example cytokeratin 19 and KIT expression in pancreatic NETs. There is no predictive biomarker in use, with the exception of somatostatin receptor (SSTR) 2 expression for predicting the amenability of a tumor to in vivo SSTR targeting for imaging or therapy.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Random Forests™ is reported to be one of the most accurate classification algorithms in complex data analysis. It shows excellent performance even when most predictors are noisy and the number of variables is much larger than the number of observations. In this thesis Random Forests was applied to a large-scale lung cancer case-control study. A novel way of automatically selecting prognostic factors was proposed. Also, synthetic positive control was used to validate Random Forests method. Throughout this study we showed that Random Forests can deal with large number of weak input variables without overfitting. It can account for non-additive interactions between these input variables. Random Forests can also be used for variable selection without being adversely affected by collinearities. ^ Random Forests can deal with the large-scale data sets without rigorous data preprocessing. It has robust variable importance ranking measure. Proposed is a novel variable selection method in context of Random Forests that uses the data noise level as the cut-off value to determine the subset of the important predictors. This new approach enhanced the ability of the Random Forests algorithm to automatically identify important predictors for complex data. The cut-off value can also be adjusted based on the results of the synthetic positive control experiments. ^ When the data set had high variables to observations ratio, Random Forests complemented the established logistic regression. This study suggested that Random Forests is recommended for such high dimensionality data. One can use Random Forests to select the important variables and then use logistic regression or Random Forests itself to estimate the effect size of the predictors and to classify new observations. ^ We also found that the mean decrease of accuracy is a more reliable variable ranking measurement than mean decrease of Gini. ^