931 resultados para Document Segmentation
Resumo:
This paper considers the musicological aspects of the songs performed by Ophelia in Shakespeare's Hamlet. It proposes a reconsideration of the concept of madness and insanity by an attentive, attuned and learned listening to the songs sung by Ophelia and the ways in which they are performed and received.
Resumo:
In this paper, we propose a multi-camera application capable of processing high resolution images and extracting features based on colors patterns over graphic processing units (GPU). The goal is to work in real time under the uncontrolled environment of a sport event like a football match. Since football players are composed for diverse and complex color patterns, a Gaussian Mixture Models (GMM) is applied as segmentation paradigm, in order to analyze sport live images and video. Optimization techniques have also been applied over the C++ implementation using profiling tools focused on high performance. Time consuming tasks were implemented over NVIDIA's CUDA platform, and later restructured and enhanced, speeding up the whole process significantly. Our resulting code is around 4-11 times faster on a low cost GPU than a highly optimized C++ version on a central processing unit (CPU) over the same data. Real time has been obtained processing until 64 frames per second. An important conclusion derived from our study is the scalability of the application to the number of cores on the GPU. © 2011 Springer-Verlag.
Resumo:
In recent years, gradient vector flow (GVF) based algorithms have been successfully used to segment a variety of 2-D and 3-D imagery. However, due to the compromise of internal and external energy forces within the resulting partial differential equations, these methods may lead to biased segmentation results. In this paper, we propose MSGVF, a mean shift based GVF segmentation algorithm that can successfully locate the correct borders. MSGVF is developed so that when the contour reaches equilibrium, the various forces resulting from the different energy terms are balanced. In addition, the smoothness constraint of image pixels is kept so that over- or under-segmentation can be reduced. Experimental results on publicly accessible datasets of dermoscopic and optic disc images demonstrate that the proposed method effectively detects the borders of the objects of interest.
Resumo:
It has been argued that the variation in brain activity that occurs when observing another person reflects a representation of actions that is indivisible, and which plays out in full once the intent of the actor can be discerned. We used transcranial magnetic stimulation to probe the excitability of corticospinal projections to 2 intrinsic hand muscles while motions to reach and grasp an object were observed. A symbolic cue either faithfully indicated the required final orientation of the object and thus the nature of the grasp that was required, or was in conflict with the movement subsequently displayed. When the cue was veridical, modulation of excitability was in accordance with the functional role of the muscles in the action observed. If however the cue had indicated that the alternative grasp would be required, modulation of output to first dorsal interosseus was consistent with the action specified, rather than the action observed-until the terminal phase of the motion sequence during which the object was seen lifted. Modulation of corticospinal output during observation is thus segmented-it progresses initially in accordance with the action anticipated, and if discrepancies are revealed by visual input, coincides thereafter with that of the action seen.
Resumo:
Life science research aims to continuously improve the quality and standard of human life. One of the major challenges in this area is to maintain food safety and security. A number of image processing techniques have been used to investigate the quality of food products. In this paper,we propose a new algorithm to effectively segment connected grains so that each of them can be inspected in a later processing stage. One family of the existing segmentation methods is based on the idea of watersheding, and it has shown promising results in practice.However,due to the over-segmentation issue,this technique has experienced poor performance in various applications,such as inhomogeneous background and connected targets. To solve this problem,we present a combination of two classical techniques to handle this issue.In the first step,a mean shift filter is used to eliminate the inhomogeneous background, where entropy is used to be a converging criterion. Secondly,a color gradient algorithm is used in order to detect the most significant edges, and a marked watershed transform is applied to segment cluttered objects out of the previous processing stages. The proposed framework is capable of compromising among execution time, usability, efficiency and segmentation outcome in analyzing ring die pellets. The experimental results demonstrate that the proposed approach is effectiveness and robust.
Resumo:
Analysis of colorectal carcinoma (CRC) tissue for KRAS codon 12 or 13 mutations to guide use of anti-epidermal growth factor receptor (EGFR) therapy is now considered mandatory in the UK. The scope of this practice has been recently extended because of data indicating that NRAS mutations and additional KRAS mutations also predict for poor response to anti-EGFR therapy. The following document provides guidance on RAS (i.e., KRAS and NRAS) testing of CRC tissue in the setting of personalised medicine within the UK and particularly within the NHS. This guidance covers issues related to case selection, preanalytical aspects, analysis and interpretation of such RAS testing.
Resumo:
Report on implementation of the candidate gender quota in the Fianna Fail Party.
Resumo:
Clusters of text documents output by clustering algorithms are often hard to interpret. We describe motivating real-world scenarios that necessitate reconfigurability and high interpretability of clusters and outline the problem of generating clusterings with interpretable and reconfigurable cluster models. We develop two clustering algorithms toward the outlined goal of building interpretable and reconfigurable cluster models. They generate clusters with associated rules that are composed of conditions on word occurrences or nonoccurrences. The proposed approaches vary in the complexity of the format of the rules; RGC employs disjunctions and conjunctions in rule generation whereas RGC-D rules are simple disjunctions of conditions signifying presence of various words. In both the cases, each cluster is comprised of precisely the set of documents that satisfy the corresponding rule. Rules of the latter kind are easy to interpret, whereas the former leads to more accurate clustering. We show that our approaches outperform the unsupervised decision tree approach for rule-generating clustering and also an approach we provide for generating interpretable models for general clusterings, both by significant margins. We empirically show that the purity and f-measure losses to achieve interpretability can be as little as 3 and 5%, respectively using the algorithms presented herein.