695 resultados para Disinfection byproducts
Resumo:
Objectives: Ozone has been used as an alternative method for the decontamination of water, food, equipment and instruments. The objective of this study was to evaluate the antimicrobial effects of ozonated water on the sanitization of dental instruments that were contaminated by Escherichia coli, Staphylococcus aureus, Candida albicans and the spores of Bacillus atrophaeus. Methods: A total of one hundred and twenty standardized samples of diamond dental burs were experimentally contaminated with E. coli (ATCC 25922), S. aureus (ATCC 6538) and C. albicans (ATCC 18804) and the spores of B. atrophaeus (ATCC 6633) for 30min. After the contamination, the samples were exposed to ozonated water (10mg/L O3) for 10 or 30min. The control group was composed of samples that were exposed to distilled water for 30min. After the exposure to the ozonated water, 0.1mL aliquots were seeded onto BHI agar to count the colony-forming units per milliliter (CFU/mL) of E. coli, S. aureus, and B. atrophaeus. Sabouraud dextrose agar was used to count the CFU/mL of C. albicans. The results were subjected to an analysis of variance and the Tukey test. Results: For all of the microorganisms studied, the ozonated water reduced the number of CFU/mL after 10 and 30. min of sanitization, and this microbial reduction was dependent on the duration of the exposure to the ozonated water. E. coli exhibited the greatest reduction in CFU/mL (2.72-3.78. log) followed by S. aureus (2.14-3.19. log), C. albicans (1.44-2.14. log) and the spores of B. atrophaeus (1.01-1.98. log). Conclusion: The ozonated water was effective in reducing the CFU of E. coli, S. aureus, C. albicans and B. atrophaeus spores, suggesting that ozonated water can be used for the sanitization of dental instruments. © 2012 King Saud Bin Abdulaziz University for Health Sciences.
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Tillandsia gardneri is a bromeliad with ornamental value and a wide geographical distribution over Brazil. However, due to habitat loss and illegal overcollection in the wild it is included as a vulnerable species in the official list of endangered plants of the State of Rio Grande do Sul, Brazil. The development of a protocol for T. gardneri seed propagation in vitro may be useful for reintroducing plants in their natural habitats, and for germplasm conservation. A difficult problem encountered during the establishment of an in vitro culture is explants disinfection, especially when working with endangered species, from which explant availability is restricted. Thus, the establishment of a sterilization protocol is crucial for the initiation and success of a micropropagation system for T. gardneri. The objective of this study was to evaluate the effect of sodium hypochlorite concentration and exposure time in seed and seedling surface disinfection, tissue sensitivity and development. Sodium hypochlorite solutions (10 or 20%/5, 10 or 15 min; 25%/5 or 10 min; and 50%/5 min) were effective in eliminating seed superficial contaminants. There was no significant difference among the effective sterilization treatments in relation to seed germination (%), and seedling length and number of leaves, after 120 days in vitro. Also, no damage to seed and seedling tissues were observed. Surface sterilization of seedlings, for initiation of an in vitro culture, required higher concentrations of sodium hypochlorite (25%/15 min; 20 or 50%/5, 10 or 15 min; and 40%/5 and 10 min) for controlling fungal and yeast contamination, compared to seed sterilization. No significant differences among these treatments were found in relation to seedling length and number of leaves, after 60 days in vitro.
Resumo:
Bovine mastitis is considered the main disease causing great economic losses in dairy herds. It is usually treated by antimicrobial chemicals that promote drug resistance, residues in food and environmental contamination. However, consumers in different countries requires more natural foods and with higher quality. Thus, the objective was to check the activities of propolis in controlling bovine mastitis. Seventy-two Holstein cows were used. The mastitis was identified by the California Mastitis Test, somatic cell counts and microbiological examination of milk. Four treatments were held: in group EAP1 10ml of a 30% alcoholic propolis extract (EAP) were given orally for seven consecutive days; in group EAP2 the same procedure described for the first group was used, in addition EAP was used for immersion of the teats before and after milking; in group CA alcohol was used for immersion of the teats before and after milking; and in group CT animals were subjected to soaking and disinfection, procedures routinely used by the property. The results were analyzed by the non-parametric variance model for repeated measures complemented by independent groups in multiple comparisons. There was a decrease of the somatic cell count in all groups. The biological activities of propolis provide great prospects; however, under the conditions evaluated, it was not possible to observe differences between treatments. The great diversity in its chemical composition and the complexity of multiple synergistic mechanisms involved in its biological activity require additional clinical trials.
Resumo:
The aim of this study was to evaluate the hardness, roughness and mass loss of an acrylic denture base resin after in vitro exposure to four disinfectant solutions. Forty specimens (Clássico, Brazil) were prepared and randomly assigned to 4 groups n = 10) according to the disinfectant solution: G1: control, stored in distilled water at 37 degrees C; G2: 1% sodium hypochlorite; G3: 2% glutaraldehyde; G4: 4% chlorhexidine. G2 to G4 were immersed for 60 minutes in the disinfectant solution. Measurements were carried out both before and after immersion in the solution. The surface was analyzed with a surface roughness tester (Surfcorder SE 1700 KOZAKALAB), a microdurometer FM-700 (Future Tech) and a scanning electron microscope (DSM 962-ZEISS). Loss of mass was determined with a digital weighing scale. After disinfection procedures, values were analyzed statistically. The acrylic denture base resin may be vulnerable to surface changes after in vitro immersion in the disinfectant solutions studied.
Resumo:
New assays with HepG2 cells indicate that Indigo Carmine (IC), a dye that is widely used as additive in many food and pharmaceutical industries exhibited cytotoxic effects. This work describes the development of a bicomponent nanostructured Ti/TiO2/WO3 electrode prepared by template method and investigates its efficiency in a photoelectrocatalytic method by using visible light irradiation and applied potential of 1V. After 2h of treatment there are reduction of 97% discoloration, 62% of mineralization and formation of three byproducts assigned as: 2-amine-5-sulfo-benzoic acid, 2,3-dioxo-14-indole-5-sulfonic acid, and 2-amino-α-oxo-5-sulfo-benzeneacetic acid were identified by HPLC-MS/MS. But, cytotoxicity was completely removed after 120min of treatment. © 2013 Elsevier Ltd.
Resumo:
The present study describes the efficiency of heterogeneous photocatalytic reactor for the inactivation of three air born bacteria, Escherichia coli, Bacillus subtilis and Staphylococcus aureus using metal modified TiO2 photocatalysts and blacklight irradiation. The catalysts were prepared by photodeposition of silver, palladium or iron on commercial TiO2, immobilized on glass plates. X-ray photoelectron spectroscopy analysis was applied to determine the atomic percentage and species of each metal on the TiO2 surface, showing that 85% of silver, 73% of palladium and 45% of iron were present in metallic form on TiO2 surface. The plates were positioned on the inner lateral walls of a chamber through which the contaminated air flow passed for disinfection. Irradiation of bare TiO 2 resulted in 50% inactivation of E. coli while 41% and 35% inactivation of B. subtilis and S. aureus were obtained, respectively. When metal modified TiO2 was applied, the inactivation of B. subtilis was improved to 91% using Pd-TiO2 while of S. aureus was improved to 94% with Fe-TiO2, showing in this case no significant difference when compared to Ag-TiO2 and Pd-TiO2. In contrast, inactivation of E. coli was not significantly increased when metal modified TiO2 was used, ranging from 47% to 57%. © 2012 Elsevier B.V.
Resumo:
Background: Ocular prosthesis materials should have specific properties for their indication and durability; therefore, it is important to investigate their physical behaviour when affected by several disinfectants. Objectives: This study evaluated the influence of different disinfecting solutions on the microhardness and surface roughness of acrylic resins for ocular prosthesis. Materials and Methods: Fifty samples simulating ocular prostheses were fabricated with N1 resin and colourless resin and divided (n = 10) according to the disinfectant used: neutral soap, Opti-free, Efferdent, 1% hypochlorite (HYC) and 4% chlorhexidine (CHX). Samples were stored in saline solution at 37°C and disinfected during 120 days. Both microhardness and roughness were investigated before, after 60 days and 120 days of disinfection and storage. Microhardness was measured using a microhardner and the roughness with a roughness device. Results: N1 resin showed lower microhardness when compared with colourless resin (p < 0.05). HYC and CHX groups exhibited the highest change of microhardness and roughness values (p < 0.05). An increase in roughness and reduction in microhardness of ocular acrylic resins were observed after both periods of disinfection and storage (p < 0.05). Conclusion: Both disinfection/storage periods affected the microhardness and roughness values of the samples. © 2012 The Gerodontology Society and John Wiley & Sons A/S.
Resumo:
Agroindustrial by-products and residues from treatment of sewage sludge have been recently recycled as soil amendments. This study was aimed at assessing toxic potential of biosolid, obtained from a sewage treatment plant (STP), vinasse, a by-product of the sugar cane industry, and a combination of both residues using Allium cepa assay. Bioprocessing of these samples by a terrestrial invertebrate (diplopod Rhinocricus padbergi) was also examined. Bioassay assembly followed standards of the Brazilian legislation for disposal of these residues. After adding residues, 20 diplopods were placed in each terrarium, where they remained for 30 days. Chemical analysis and the A. cepa assay were conducted before and after bioprocessing by diplopods. At the end of the bioassay, there was a decrease in arsenic and mercury. For the remaining metals, accumulation and/or bioavailability varied in all samples but suggested bioprocessing by animals. The A. cepa test revealed genotoxic effects characterized by different chromosome aberrations. Micronuclei and chromosome breaks on meristematic cells and F1 cells with micronuclei were examined to assess mutagenicity of samples. After 30 days, the genotoxic effects were significantly reduced in the soil + biosolid and soil + biosolid + vinasse groups as well as the mutagenic effects in the soil + biosolid + vinasse group. Similar to vermicomposting, bioprocessing of residues by diplopods can be a feasible alternative and used prior to application in crops to improve degraded soils and/or city dumps. Based on our findings, further studies are needed to adequately dispose of these residues in the environment. © 2013 Springer Science+Business Media Dordrecht.
Resumo:
Mutualistic associations shape the evolution in different organism groups. The association between the leaf-cutter ant Atta sexdens and the basidiomycete fungus Leucoagaricus gongylophorus has enabled them to degrade starch from plant material generating glucose, which is a major food source for both mutualists. Starch degradation is promoted by enzymes contained in the fecal fluid that ants deposit on the fungus culture in cut leaves inside the nests. To understand the dynamics of starch degradation in ant nests, we purified and characterized starch degrading enzymes from the ant fecal fluid and from laboratory cultures of L. gongylophorus and found that the ants intestine positively selects fungal α-amylase and a maltase likely produced by the ants, as a negative selection is imposed to fungal maltase and ant α-amylases. Selected enzymes are more resistant to catabolic repression by glucose and proposed to structure a metabolic pathway in which the fungal α-amylase initiates starch catalysis to generate byproducts which are sequentially degraded by the maltase to produce glucose. The pathway is responsible for effective degradation of starch and proposed to represent a major evolutionary innovation enabling efficient starch assimilation from plant material by leaf-cutters. © 2013 Elsevier Ltd.
Resumo:
Biofilms have been observed in the fluid pathways of hemodialysis machines. The impacts of four biocides used for the disinfection of hemodialysis systems were tested against Candida parapsilosis sensu stricto and Candida orthopsilosis biofilms generated by isolates obtained from a hydraulic circuit that were collected in a hemodialysis unit. Acetic acid was shown to be the most effective agent against Candida biofilms. Strategies for effective disinfection procedures used for hemodialysis systems should also seek to kill and inhibit biofilms. Copyright © 2013, American Society for Microbiology. All Rights Reserved.
Resumo:
Vegetables were analyzed for total N-nitrosamines (NAs) and the influence of disinfection processes was assessed. Differences in NAs found in cabbage, spinach, and broccoli were determined by square wave voltammetry using a boron-doped diamond electrode. Analysis of samples showed that all samples contained detectable levels of NAs but the results indicated that organic contained less than conventionally grown products. The sum of the total NAs was higher in the cabbage samples, ranging between 2.8-3.1 ppb and lower in broccoli samples at 0.2-1.1 ppb. The method described is simple, rapid, selective, and sensitive. The results suggested that the disinfection process affects the level of NAs, in this manner affecting the level of human exposure to NAs. © 2012 Springer Science+Business Media New York.
Resumo:
The demand for petroleum has been rising rapidly due to increasing industrialization and modernization. This economic development has led to a huge demand for energy, most of which is derived from fossil fuel. However, the limited reserve of fossil fuel has led many researchers to look for alternative fuels which can be produced from renewable feedstock. Increasing fossil fuel prices have prompted the global oil industry to look at biodiesel, which is from renewable energy sources. Biodiesel is produced from animal fats and vegetable oils and has become more attractive because it is more environmentally friendly and is obtained from renewable sources. Glycerol is the main by-product of biodiesel production; about 10% of the weight of biodiesel is generated in glycerol. The large amount of glycerol generated may become an environmental problem, since it cannot be disposed of in the environment. In this paper, an attempt has been made to review the different approaches and techniques used to produce glycerol (hydrolysis, transesterification, refining crude glycerol). The world biodiesel/glycerol production and consumption market, the current world glycerin and glycerol prices as well as the news trends for the use of glycerol mainly in Brazil market are analyzed. The technological production and physicochemical properties of glycerol are described, as is the characterization of crude glycerol obtained from different seed oil feedstock. Finally, a simple way to use glycerol in large amounts is combustion, which is an advantageous method as it does not require any purification. However, the combustion process of crude glycerol is not easy and there are technological difficulties. The news and mainly research about the combustion of glycerol was also addressed in this review. © 2013 Elsevier Ltd.
Resumo:
Utilising organic residues in agriculture contributes to the conservation of natural resources by recycling carbon and mineral elements. Organic residues produced by the sugar and alcohol agroindustries have great potential for use in conservation agriculture. The production of sugar and alcohol generates large quantities of byproducts, such as filter cake and vinasse, which can be used as soil improvers and substitutes for inorganic phosphorus and potassium fertilizers. However, the use of these residues in agriculture requires specific recommendations for each pedoclimatic condition to prevent environmental damage. © 2013 Renato de Mello Prado et al.
Resumo:
Introduction: The aim of this study was to investigate the capacity of endodontic regenerative procedures combining an induced blood clot, platelet-rich plasma (PRP), and bone marrow aspirate (BMA) to regenerate dental pulp in canine closed-apex necrotic teeth. Methods: Apical periodontitis was induced in 20 upper and lower premolars of 2 dogs. After biomechanical preparation, enlargement to a #60 file, and disinfection with a triantibiotic paste for 28 days, the roots were randomly assigned to 4 treatment groups: blood clot (BC), BC + PRP gel, BC + BMA gel, and BC + BMA/PRP gel. Negative controls were also included. After a 3-month follow-up period, the animals were killed. Results: Histologic analysis showed the presence of newly formed vital tissues (connective, cement-like, and bone-like tissue) in 23 of the 32 treated roots (71.87%). There was no statistically significant difference between the treatment groups. Conclusions: New vital tissues were formed and characterized as connective, cementum-like, or bone-like, but not as pulp-like tissue; PRP and/or BMA did not improve the tissue ingrowth. © 2013 American Association of Endodontists.