943 resultados para Digital processing
Resumo:
This paper proposes a methodological scheme for the photovoltaic (PV) simulator design. With the advantages of a digital controller system, linear interpolation is proposed for precise fitting with higher computational efficiency. A novel control strategy that directly tackles two different duty cycles is proposed and implemented to achieve a full-range operation including short circuit (SC) and open circuit (OC) conditions. Systematic design procedures for both hardware and algorithm are explained, and a prototype is built. Experimental results confirm an accurate steady state performance under different load conditions, including SC and OC. This low power apparatus can be adopted for PV education and research with a limited budget.
Resumo:
ACM Computing Classification System (1998): I.7, I.7.5.
Resumo:
A new generation of high-capacity WDM systems with extremely robust performance has been enabled by coherent transmission and digital signal processing. To facilitate widespread deployment of this technology, particularly in the metro space, new photonic components and subsystems are being developed to support cost-effective, compact, and scalable transceivers. We briefly review the recent progress in InP-based photonic components, and report numerical simulation results of an InP-based transceiver comprising a dual-polarization I/Q modulator and a commercial DSP ASIC. Predicted performance penalties due to the nonlinear response, lower bandwidth, and finite extinction ratio of these transceivers are less than 1 and 2 dB for 100-G PM-QPSK and 200-G PM-16QAM, respectively. Using the well-established Gaussian-Noise model, estimated system reach of 100-G PM-QPSK is greater than 600 km for typical ROADM-based metro-regional systems with internode losses up to 20 dB. © 1983-2012 IEEE.
Resumo:
The current research activities of the Institute of Mathematics and Informatics at the Bulgarian Academy of Sciences (IMI—BAS) include the study and application of knowledge-based methods for the creation, integration and development of multimedia digital libraries with applications in cultural heritage. This report presents IMI-BAS’s developments at the digital library management systems and portals, i.e. the Bulgarian Iconographical Digital Library, the Bulgarian Folklore Digital Library and the Bulgarian Folklore Artery, etc. developed during the several national and international projects: - "Digital Libraries with Multimedia Content and its Application in Bulgarian Cultural Heritage" (contract 8/21.07.2005 between the IMI–BAS, and the State Agency for Information Technologies and Communications; - FP6/IST/P-027451 PROJECT LOGOS "Knowledge-on-Demand for Ubiquitous Learning", EU FP6, IST, Priority 2.4.13 "Strengthening the Integration of the ICT research effort in an Enlarged Europe" - NSF project D-002-189 SINUS "Semantic Technologies for Web Services and Technology Enhanced Learning". - NSF project IO-03-03/2006 ―Development of Digital Libraries and Information Portal with Virtual Exposition "Bulgarian Folklore Heritage". The presented prototypes aims to provide flexible and effective access to the multimedia presentation of the cultural heritage artefacts and collections, maintaining different forms and format of the digitized information content and rich functionality for interaction. The developments are a result of long- standing interests and work in the technological developments in information systems, knowledge processing and content management systems. The current research activities aims at creating innovative solutions for assembling multimedia digital libraries for collaborative use in specific cultural heritage context, maintaining their semantic interoperability and creating new services for dynamic aggregation of their resources, access improvement, personification, intelligent curation of content, and content protection. The investigations are directed towards the development of distributed tools for aggregating heterogeneous content and ensuring semantic compatibility with the European digital library EUROPEANA, thus providing possibilities for pan- European access to rich digitalised collections of Bulgarian cultural heritage.
Resumo:
The paper describes three software packages - the main components of a software system for processing and web-presentation of Bulgarian language resources – parallel corpora and bilingual dictionaries. The author briefly presents current versions of the core components “Dictionary” and “Corpus” as well as the recently developed component “Connection” that links both “Dictionary” and “Corpus”. The components main functionalities are described as well. Some examples of the usage of the system’s web-applications are included.
Resumo:
The purpose of this study was to investigate the effects of direct instruction in story grammar on the reading and writing achievement of second graders. Three aspects of story grammar (character, setting, and plot) were taught with direct instruction using the concept development technique of deep processing. Deep processing which included (a) visualization (the drawing of pictures), (b) verbalization (the writing of sentences), (c) the attachment of physical sensations, and (d) the attachment of emotions to concepts was used to help students make mental connections necessary for recall and application of character, setting, and plot when constructing meaning in reading and writing.^ Four existing classrooms consisting of seventy-seven second-grade students were randomly assigned to two treatments, experimental and comparison. Both groups were pretested and posttested for reading achievement using the Gates-MacGinitie Reading Tests. Pretest and posttest writing samples were collected and evaluated. Writing achievement was measured using (a) a primary trait scoring scale (an adapted version of the Glazer Narrative Composition Scale) and (b) an holistic scoring scale by R. J. Pritchard. ANCOVAs were performed on the posttests adjusted for the pretests to determine whether or not the methods differed. There was no significant improvement in reading after the eleven-day experimental period for either group; nor did the two groups differ. There was significant improvement in writing for the experimental group over the comparison group. Pretreatment and posttreatment interviews were selectively collected to evaluate qualitatively if the students were able to identify and manipulate elements of story grammar and to determine patterns in metacognitive processing. Interviews provided evidence that most students in the experimental group gained while most students in the comparison group did not gain in their ability to manipulate, with understanding, the concepts of character, setting, and plot. ^
Resumo:
This dissertation develops a new mathematical approach that overcomes the effect of a data processing phenomenon known as “histogram binning” inherent to flow cytometry data. A real-time procedure is introduced to prove the effectiveness and fast implementation of such an approach on real-world data. The histogram binning effect is a dilemma posed by two seemingly antagonistic developments: (1) flow cytometry data in its histogram form is extended in its dynamic range to improve its analysis and interpretation, and (2) the inevitable dynamic range extension introduces an unwelcome side effect, the binning effect, which skews the statistics of the data, undermining as a consequence the accuracy of the analysis and the eventual interpretation of the data. ^ Researchers in the field contended with such a dilemma for many years, resorting either to hardware approaches that are rather costly with inherent calibration and noise effects; or have developed software techniques based on filtering the binning effect but without successfully preserving the statistical content of the original data. ^ The mathematical approach introduced in this dissertation is so appealing that a patent application has been filed. The contribution of this dissertation is an incremental scientific innovation based on a mathematical framework that will allow researchers in the field of flow cytometry to improve the interpretation of data knowing that its statistical meaning has been faithfully preserved for its optimized analysis. Furthermore, with the same mathematical foundation, proof of the origin of such an inherent artifact is provided. ^ These results are unique in that new mathematical derivations are established to define and solve the critical problem of the binning effect faced at the experimental assessment level, providing a data platform that preserves its statistical content. ^ In addition, a novel method for accumulating the log-transformed data was developed. This new method uses the properties of the transformation of statistical distributions to accumulate the output histogram in a non-integer and multi-channel fashion. Although the mathematics of this new mapping technique seem intricate, the concise nature of the derivations allow for an implementation procedure that lends itself to a real-time implementation using lookup tables, a task that is also introduced in this dissertation. ^
Resumo:
A heuristic for batching orders in a manual order-picking warehouse has been developed. It prioritizes orders based on due time to prevent mixing of orders of different priority levels. The order density of aisles criterion is used to form batches. It also determines the number of pickers required and assigns batches to pickers such that there is a uniform workload per unit of time. The effectiveness of the heuristic was studied by observing computational time and aisle congestion for various numbers of total orders and number of orders that form a batch. An initial heuristic performed well for small number of orders, but for larger number of orders, a partitioning technique is computationally more efficient, needing only minutes to solve for thousands of orders, while preserving 90% of the batch quality obtained with the original heuristic. Comparative studies between the heuristic and other published heuristics are needed. ^
Resumo:
The need to provide computers with the ability to distinguish the affective state of their users is a major requirement for the practical implementation of affective computing concepts. This dissertation proposes the application of signal processing methods on physiological signals to extract from them features that can be processed by learning pattern recognition systems to provide cues about a person's affective state. In particular, combining physiological information sensed from a user's left hand in a non-invasive way with the pupil diameter information from an eye-tracking system may provide a computer with an awareness of its user's affective responses in the course of human-computer interactions. In this study an integrated hardware-software setup was developed to achieve automatic assessment of the affective status of a computer user. A computer-based "Paced Stroop Test" was designed as a stimulus to elicit emotional stress in the subject during the experiment. Four signals: the Galvanic Skin Response (GSR), the Blood Volume Pulse (BVP), the Skin Temperature (ST) and the Pupil Diameter (PD), were monitored and analyzed to differentiate affective states in the user. Several signal processing techniques were applied on the collected signals to extract their most relevant features. These features were analyzed with learning classification systems, to accomplish the affective state identification. Three learning algorithms: Naïve Bayes, Decision Tree and Support Vector Machine were applied to this identification process and their levels of classification accuracy were compared. The results achieved indicate that the physiological signals monitored do, in fact, have a strong correlation with the changes in the emotional states of the experimental subjects. These results also revealed that the inclusion of pupil diameter information significantly improved the performance of the emotion recognition system. ^
Resumo:
This research pursued the conceptualization and real-time verification of a system that allows a computer user to control the cursor of a computer interface without using his/her hands. The target user groups for this system are individuals who are unable to use their hands due to spinal dysfunction or other afflictions, and individuals who must use their hands for higher priority tasks while still requiring interaction with a computer. ^ The system receives two forms of input from the user: Electromyogram (EMG) signals from muscles in the face and point-of-gaze coordinates produced by an Eye Gaze Tracking (EGT) system. In order to produce reliable cursor control from the two forms of user input, the development of this EMG/EGT system addressed three key requirements: an algorithm was created to accurately translate EMG signals due to facial movements into cursor actions, a separate algorithm was created that recognized an eye gaze fixation and provided an estimate of the associated eye gaze position, and an information fusion protocol was devised to efficiently integrate the outputs of these algorithms. ^ Experiments were conducted to compare the performance of EMG/EGT cursor control to EGT-only control and mouse control. These experiments took the form of two different types of point-and-click trials. The data produced by these experiments were evaluated using statistical analysis, Fitts' Law analysis and target re-entry (TRE) analysis. ^ The experimental results revealed that though EMG/EGT control was slower than EGT-only and mouse control, it provided effective hands-free control of the cursor without a spatial accuracy limitation, and it also facilitated a reliable click operation. This combination of qualities is not possessed by either EGT-only or mouse control, making EMG/EGT cursor control a unique and practical alternative for a user's cursor control needs. ^
Resumo:
This research is motivated by a practical application observed at a printed circuit board (PCB) manufacturing facility. After assembly, the PCBs (or jobs) are tested in environmental stress screening (ESS) chambers (or batch processing machines) to detect early failures. Several PCBs can be simultaneously tested as long as the total size of all the PCBs in the batch does not violate the chamber capacity. PCBs from different production lines arrive dynamically to a queue in front of a set of identical ESS chambers, where they are grouped into batches for testing. Each line delivers PCBs that vary in size and require different testing (or processing) times. Once a batch is formed, its processing time is the longest processing time among the PCBs in the batch, and its ready time is given by the PCB arriving last to the batch. ESS chambers are expensive and a bottleneck. Consequently, its makespan has to be minimized. ^ A mixed-integer formulation is proposed for the problem under study and compared to a formulation recently published. The proposed formulation is better in terms of the number of decision variables, linear constraints and run time. A procedure to compute the lower bound is proposed. For sparse problems (i.e. when job ready times are dispersed widely), the lower bounds are close to optimum. ^ The problem under study is NP-hard. Consequently, five heuristics, two metaheuristics (i.e. simulated annealing (SA) and greedy randomized adaptive search procedure (GRASP)), and a decomposition approach (i.e. column generation) are proposed—especially to solve problem instances which require prohibitively long run times when a commercial solver is used. Extensive experimental study was conducted to evaluate the different solution approaches based on the solution quality and run time. ^ The decomposition approach improved the lower bounds (or linear relaxation solution) of the mixed-integer formulation. At least one of the proposed heuristic outperforms the Modified Delay heuristic from the literature. For sparse problems, almost all the heuristics report a solution close to optimum. GRASP outperforms SA at a higher computational cost. The proposed approaches are viable to implement as the run time is very short. ^
Resumo:
Parallel processing is prevalent in many manufacturing and service systems. Many manufactured products are built and assembled from several components fabricated in parallel lines. An example of this manufacturing system configuration is observed at a manufacturing facility equipped to assemble and test web servers. Characteristics of a typical web server assembly line are: multiple products, job circulation, and paralleling processing. The primary objective of this research was to develop analytical approximations to predict performance measures of manufacturing systems with job failures and parallel processing. The analytical formulations extend previous queueing models used in assembly manufacturing systems in that they can handle serial and different configurations of paralleling processing with multiple product classes, and job circulation due to random part failures. In addition, appropriate correction terms via regression analysis were added to the approximations in order to minimize the gap in the error between the analytical approximation and the simulation models. Markovian and general type manufacturing systems, with multiple product classes, job circulation due to failures, and fork and join systems to model parallel processing were studied. In the Markovian and general case, the approximations without correction terms performed quite well for one and two product problem instances. However, it was observed that the flow time error increased as the number of products and net traffic intensity increased. Therefore, correction terms for single and fork-join stations were developed via regression analysis to deal with more than two products. The numerical comparisons showed that the approximations perform remarkably well when the corrections factors were used in the approximations. In general, the average flow time error was reduced from 38.19% to 5.59% in the Markovian case, and from 26.39% to 7.23% in the general case. All the equations stated in the analytical formulations were implemented as a set of Matlab scripts. By using this set, operations managers of web server assembly lines, manufacturing or other service systems with similar characteristics can estimate different system performance measures, and make judicious decisions - especially setting delivery due dates, capacity planning, and bottleneck mitigation, among others.
Resumo:
A job shop with one batch processing and several discrete machines is analyzed. Given a set of jobs, their process routes, processing requirements, and size, the objective is to schedule the jobs such that the makespan is minimized. The batch processing machine can process a batch of jobs as long as the machine capacity is not violated. The batch processing time is equal to the longest processing job in the batch. The problem under study can be represented as Jm:batch:Cmax. If no batches were formed, the scheduling problem under study reduces to the classical job shop scheduling problem (i.e. Jm:: Cmax), which is known to be NP-hard. This research extends the scheduling literature by combining Jm::Cmax with batch processing. The primary contributions are the mathematical formulation, a new network representation and several solution approaches. The problem under study is observed widely in metal working and other industries, but received limited or no attention due to its complexity. A novel network representation of the problem using disjunctive and conjunctive arcs, and a mathematical formulation are proposed to minimize the makespan. Besides that, several algorithms, like batch forming heuristics, dispatching rules, Modified Shifting Bottleneck, Tabu Search (TS) and Simulated Annealing (SA), were developed and implemented. An experimental study was conducted to evaluate the proposed heuristics, and the results were compared to those from a commercial solver (i.e., CPLEX). TS and SA, with the combination of MWKR-FF as the initial solution, gave the best solutions among all the heuristics proposed. Their results were close to CPLEX; and for some larger instances, with total operations greater than 225, they were competitive in terms of solution quality and runtime. For some larger problem instances, CPLEX was unable to report a feasible solution even after running for several hours. Between SA and the experimental study indicated that SA produced a better average Cmax for all instances. The solution approaches proposed will benefit practitioners to schedule a job shop (with both discrete and batch processing machines) more efficiently. The proposed solution approaches are easier to implement and requires short run times to solve large problem instances.
Resumo:
Today, most conventional surveillance networks are based on analog system, which has a lot of constraints like manpower and high-bandwidth requirements. It becomes the barrier for today's surveillance network development. This dissertation describes a digital surveillance network architecture based on the H.264 coding/decoding (CODEC) System-on-a-Chip (SoC) platform. The proposed digital surveillance network architecture includes three major layers: software layer, hardware layer, and the network layer. The following outlines the contributions to the proposed digital surveillance network architecture. (1) We implement an object recognition system and an object categorization system on the software layer by applying several Digital Image Processing (DIP) algorithms. (2) For better compression ratio and higher video quality transfer, we implement two new modules on the hardware layer of the H.264 CODEC core, i.e., the background elimination module and the Directional Discrete Cosine Transform (DDCT) module. (3) Furthermore, we introduce a Digital Signal Processor (DSP) sub-system on the main bus of H.264 SoC platforms as the major hardware support system for our software architecture. Thus we combine the software and hardware platforms to be an intelligent surveillance node. Lab results show that the proposed surveillance node can dramatically save the network resources like bandwidth and storage capacity.
Resumo:
As massive data sets become increasingly available, people are facing the problem of how to effectively process and understand these data. Traditional sequential computing models are giving way to parallel and distributed computing models, such as MapReduce, both due to the large size of the data sets and their high dimensionality. This dissertation, as in the same direction of other researches that are based on MapReduce, tries to develop effective techniques and applications using MapReduce that can help people solve large-scale problems. Three different problems are tackled in the dissertation. The first one deals with processing terabytes of raster data in a spatial data management system. Aerial imagery files are broken into tiles to enable data parallel computation. The second and third problems deal with dimension reduction techniques that can be used to handle data sets of high dimensionality. Three variants of the nonnegative matrix factorization technique are scaled up to factorize matrices of dimensions in the order of millions in MapReduce based on different matrix multiplication implementations. Two algorithms, which compute CANDECOMP/PARAFAC and Tucker tensor decompositions respectively, are parallelized in MapReduce based on carefully partitioning the data and arranging the computation to maximize data locality and parallelism.