909 resultados para Differential item functioning
Resumo:
During the postnatal development of cat visual cortex and corpus callosum the molecular composition of tau proteins varied with age. In both structures, they changed between postnatal days 19 and 39 from a set of two juvenile forms to a set of at least two adult variants with higher molecular weights. During the first postnatal week, tau proteins were detectable with TAU-1 antibody in axons of corpus callosum and visual cortex, and in some perikarya and dendrites in the visual cortex. At later ages, tau proteins were located exclusively within axons in all cortical layers and in the corpus callosum. Dephosphorylation of postnatal day 11 cortical tissue by alkaline phosphatase strongly increased tau protein immunoreactivity on Western blots and in numerous perikarya and dendrites in all cortical layers, in sections, suggesting that some tau forms had been unmasked. During postnatal development the intensity of this phosphate-dependent somatodendritic staining decreased, but remained in a few neurons in cortical layers II and III. On blots, the immunoreactivity of adult tau to TAU-1 was only marginally increased by dephosphorylation. Other tau antibodies (TAU-2, B19 and BR133) recognized two juvenile and two adult cat tau proteins on blots, and localized tau in axons or perikarya and dendrites in tissue untreated with alkaline phosphatase. Tau proteins in mature tissue were soluble and not associated with detergent-resistant structures. Furthermore, dephosphorylation by alkaline phosphatase resulted in the appearance of more tau proteins in soluble fractions. Therefore tau proteins seem to alter their degree of phosphorylation during development. This could affect microtubule stability as well as influence axonal and dendritic differentiation.
Resumo:
In specific cell types like keratinocytes, Notch signaling plays an important pro-differentiation and tumor suppressing function, with down-modulation of the Notch1 gene being associated with cancer development. Besides being controlled by p53, little else is known on regulation of Notch1 gene expression in this context. We report here that transcription of this gene is driven by a TATA-less "sharp peak" promoter and that the minimal functional region of this promoter, which extends from the -342 bp position to the initiation codon, is differentially active in normal versus cancer cells. This GC rich region lacks p53 binding sites, but binds Klf4 and Sp3. This finding is likely to be of biological significance, as Klf4 and, to a lesser extent, Sp3 are up-regulated in a number of cancer cells where Notch1 expression is down-modulated, and Klf4 over-expression in normal cells is sufficient to down-modulate Notch1 gene transcription. The combined knock-down of Klf4 and Sp3 was necessary for the reverse effect of increasing Notch1 transcription, consistent with the two factors exerting an overlapping repressor function through their binding to the Notch1 promoter.
Resumo:
BACKGROUND: Indocyanine green video-angiography (ICG) is a recent examination technique, its possibilities and limitations as far as intraocular tumours are concerned, haven't been fully explored yet. MATERIAL AND METHODS: We have studied 50 cases of non-pigmented choroidal tumours, including 14 cases of choroidal hemangioma's, 11 cases of posterior uveal metastases and 25 cases of non-pigmented melanoma's. RESULTS: Characteristic images were obtained when examining choroidal hemangioma's and, until a certain point, posterior choroidal metastases. Non pigmented melanoma's on the contrary, presented a great variety of different indocyanine green angiographic pictures. CONCLUSION: Indocyanine green video-angiography (ICG) has a definite value in the differential diagnosis of non-pigmented posterior choroidal tumours.
Resumo:
INTRODUCTION: We report the impact of canakinumab, a fully human anti-interleukin-1β monoclonal antibody, on inflammation and health-related quality of life (HRQoL) in patients with difficult-to-treat Gouty Arthritis. METHODS: In this eight-week, single-blind, double-dummy, dose-ranging study, patients with acute Gouty Arthritis flares who were unresponsive or intolerant to--or had contraindications for--non-steroidal anti-inflammatory drugs and/or colchicine were randomized to receive a single subcutaneous dose of canakinumab (10, 25, 50, 90, or 150 mg) (N = 143) or an intramuscular dose of triamcinolone acetonide 40 mg (N = 57). Patients assessed pain using a Likert scale, physicians assessed clinical signs of joint inflammation, and HRQoL was measured using the 36-item Short-Form Health Survey (SF-36) (acute version). RESULTS: At baseline, 98% of patients were suffering from moderate-to-extreme pain. The percentage of patients with no or mild pain was numerically greater in most canakinumab groups compared with triamcinolone acetonide from 24 to 72 hours post-dose; the difference was statistically significant for canakinumab 150 mg at these time points (P < 0.05). Treatment with canakinumab 150 mg was associated with statistically significant lower Likert scores for tenderness (odds ratio (OR), 3.2; 95% confidence interval (CI), 1.27 to 7.89; P = 0.014) and swelling (OR, 2.7; 95% CI, 1.09 to 6.50, P = 0.032) at 72 hours compared with triamcinolone acetonide. Median C-reactive protein and serum amyloid A levels were normalized by seven days post-dose in most canakinumab groups, but remained elevated in the triamcinolone acetonide group. Improvements in physical health were observed at seven days post-dose in all treatment groups; increases in scores were highest for canakinumab 150 mg. In this group, the mean SF-36 physical component summary score increased by 12.0 points from baseline to 48.3 at seven days post-dose. SF-36 scores for physical functioning and bodily pain for the canakinumab 150 mg group approached those for the US general population by seven days post-dose and reached norm values by eight weeks post-dose. CONCLUSIONS: Canakinumab 150 mg provided significantly greater and more rapid reduction in pain and signs and symptoms of inflammation compared with triamcinolone acetonide 40 mg. Improvements in HRQoL were seen in both treatment groups with a faster onset with canakinumab 150 mg compared with triamcinolone acetonide 40 mg. TRIAL REGISTRATION: clinicaltrials.gov: NCT00798369.
Resumo:
Through their capacity to sense danger signals and to generate active interleukin-1β (IL-1β), inflammasomes occupy a central role in the inflammatory response. In contrast to IL-1β, little is known about how IL-1α is regulated. We found that all inflammasome activators also induced the secretion of IL-1α, leading to the cosecretion of both IL-1 cytokines. Depending on the type of inflammasome activator, release of IL-1α was inflammasome dependent or independent. Calcium influx induced by the opening of cation channels was sufficient for the inflammasome-independent IL-1α secretion. In both cases, IL-1α was released primarily in a processed form, resulting from intracellular cleavage by calpain-like proteases. Inflammasome-caspase-1-dependent release of IL-1α and IL-1β was independent of caspase-1 catalytic activity, defining a mode of action for caspase-1. Because inflammasomes contribute to the pathology of numerous chronic inflammatory diseases such as gout and diabetes, IL-1α antagonists may be beneficial in the treatment of these disorders.
Resumo:
In order to understand relationships between executive and structural deficits in the frontal cortex of patients within normal aging or Alzheimer's disease, we studied frontal pathological changes in young and old controls compared to cases with sporadic (AD) or familial Alzheimer's disease (FAD). We performed a semi-automatic computer assisted analysis of the distribution of beta-amyloid (Abeta) deposits revealed by Abeta immunostaining as well as of neurofibrillary tangles (NFT) revealed by Gallyas silver staining in Brodman areas 10 (frontal polar), 12 (ventro-infero-median) and 24 (anterior cingular), using tissue samples from 5 FAD, 6 sporadic AD and 10 control brains. We also performed densitometric measurements of glial fibrillary acidic protein, principal compound of intermediate filaments of astrocytes, and of phosphorylated neurofilament H and M epitopes in areas 10 and 24. All regions studied seem almost completely spared in normal old controls, with only the oldest ones exhibiting a weak percentage of beta-amyloid deposit and hardly any NFT. On the contrary, all AD and FAD cases were severely damaged as shown by statistically significant increased percentages of beta-amyloid deposit, as well as by a high number of NFT. FAD cases (all from the same family) had statistically more beta-amyloid and GFAP than sporadic AD cases in both areas 10 and 24 and statistically more NFT only in area 24. The correlation between the percentage of beta-amyloid and the number of NFT was significant only for area 24. Altogether, these data suggest that the frontal cortex can be spared by AD type lesions in normal aging, but is severely damaged in sporadic and still more in familial Alzheimer's disease. The frontal regions appear to be differentially vulnerable, with area 12 having the less amyloid burden, area 24 the less NFT and area 10 having both more amyloid and more NFT. This pattern of damage in frontal regions may represent a strong neuroanatomical support for the deterioration of attention and cognitive capacities as well as for the presence of emotional and behavioral troubles in AD patients.
Resumo:
The biodistribution of transgene expression in the CNS after localized stereotaxic vector delivery is an important issue for safety of gene therapy for neurological diseases. The cellular specificity of transgene expression from rAAV2/1 vectors using the tetON expression cassette in comparison with the CMV promoter was investigated in the rat nigrostriatal pathway. After intrastriatal injection, although GFP was mainly expressed into neurons with both vectors, the relative proportions of DARPP-32+ projection neurons and parvalbumin+ interneurons were respectively 13:1 and 2:1 for the CMV and tetON vectors. DARP32+ neurons projecting to the globus pallidus were strongly GFP+ with both vectors, whereas those projecting to the substantia nigra pars reticulata (SNpr) were efficiently labeled by the CMV but poorly by the tetON vector. Numerous GFP+ cells were evidenced in the subventricular zone with both vectors. However, in the olfactory bulb (OB), GFP+ neurons were observed with the CMV but not the tetON vector. We conclude that the absence of significant amounts of transgene product in distant regions (SN and OB) constitutes a safety advantage of the AAV2/1-tetON vector for striatal gene therapy. Midbrain injections resulted in selective GFP expression in tyrosine hydroxylase+ neurons by the tetON vector whereas with the CMV vector, GFP+ cells covered a widespread area of the midbrain. The biodistribution of GFP protein corresponded to that of the transcripts and not of the viral genomes. We conclude that the rAAV2/1-tetON vector constitutes an interesting tool for specific transgene expression in midbrain dopaminergic neurons.
Resumo:
BACKGROUND: This study assesses the benefits of an individualized therapy (RECOS program) compared with the more general cognitive remediation therapy (CRT). METHODS: 138 participants took part with 65 randomized to CRT and 73 to RECOS. In the RECOS group, participants were directed towards one of five training modules (verbal memory, visuo-spatial memory and attention, working memory, selective attention or reasoning) corresponding to their key cognitive concern whereas the CRT group received a standard program. The main outcome was the total score on BADS (Behavioural Assessment of Dysexecutive Syndrome) and the secondary outcomes were: cognition (executive functions; selective attention; visuospatial memory and attention; verbal memory; working memory) and clinical measures (symptoms; insight; neurocognitive complaints; self-esteem). All outcomes were assessed at baseline (T1), week 12 (posttherapy, T2), and follow-up (week 36, i.e., 6months posttherapy, T3). RESULTS: No difference was shown for the main outcome. A significant improvement was found for BADS' profile score for RECOS at T2 and T3, and for CRT at T3. Change in BADS in the RECOS and CRT arms were not significantly different between T1 and T2 (+0.86, p=0.108), or between T1 and T3 (+0.36, p=0.540). Significant improvements were found in several secondary outcomes including cognition (executive functions, selective attention, verbal memory, and visuospatial abilities) and clinician measures (symptoms and awareness to be hampered by cognitive deficits in everyday) in both treatment arms following treatment. Self-esteem improved only in RECOS arm at T3, and working memory improved only in CRT arm at T2 and T3, but there were no differences in changes between arms. CONCLUSIONS: RECOS (specific remediation) and CRT (general remediation) globally showed similar efficacy in the present trial.
Resumo:
Understanding brain reserve in preclinical stages of neurodegenerative disorders allows determination of which brain regions contribute to normal functioning despite accelerated neuronal loss. Besides the recruitment of additional regions, a reorganisation and shift of relevance between normally engaged regions are a suggested key mechanism. Thus, network analysis methods seem critical for investigation of changes in directed causal interactions between such candidate brain regions. To identify core compensatory regions, fifteen preclinical patients carrying the genetic mutation leading to Huntington's disease and twelve controls underwent fMRI scanning. They accomplished an auditory paced finger sequence tapping task, which challenged cognitive as well as executive aspects of motor functioning by varying speed and complexity of movements. To investigate causal interactions among brain regions a single Dynamic Causal Model (DCM) was constructed and fitted to the data from each subject. The DCM parameters were analysed using statistical methods to assess group differences in connectivity, and the relationship between connectivity patterns and predicted years to clinical onset was assessed in gene carriers. In preclinical patients, we found indications for neural reserve mechanisms predominantly driven by bilateral dorsal premotor cortex, which increasingly activated superior parietal cortices the closer individuals were to estimated clinical onset. This compensatory mechanism was restricted to complex movements characterised by high cognitive demand. Additionally, we identified task-induced connectivity changes in both groups of subjects towards pre- and caudal supplementary motor areas, which were linked to either faster or more complex task conditions. Interestingly, coupling of dorsal premotor cortex and supplementary motor area was more negative in controls compared to gene mutation carriers. Furthermore, changes in the connectivity pattern of gene carriers allowed prediction of the years to estimated disease onset in individuals. Our study characterises the connectivity pattern of core cortical regions maintaining motor function in relation to varying task demand. We identified connections of bilateral dorsal premotor cortex as critical for compensation as well as task-dependent recruitment of pre- and caudal supplementary motor area. The latter finding nicely mirrors a previously published general linear model-based analysis of the same data. Such knowledge about disease specific inter-regional effective connectivity may help identify foci for interventions based on transcranial magnetic stimulation designed to stimulate functioning and also to predict their impact on other regions in motor-associated networks.
Resumo:
Our study describes tissue-specific migration of T and B cells during a localized anti-viral immune response. After mouse mammary tumor virus (MMTV) injection, B lymphocytes of the draining lymph node become infected and present a retroviral superantigen to CD4(+) T lymphocytes. Infected B cells receive superantigen-mediated help in a fashion comparable to classical immune responses. To investigate the fate of T and B lymphocytes that had interacted via cognate help in the same peripheral lymph node microenvironment we adoptively transferred them into naive recipients. Here we show that MMTV-infected B cells and superantigen-stimulated T cells were programmed to migrate to distinct sites of the body. Plasmablasts but not T cells migrated to the mammary gland and activated alpha4beta1 integrins were found to have a crucial role in the migration to the mammary gland. In contrast, T cells had a much higher affinity for secondary lymphoid organs and large intestine. This demonstrates that upon antigen-driven B and T lymphocyte interaction in the local draining lymph node a subset-specific homing program for B and T lymphocytes is induced.
Resumo:
OBJECTIVE: To investigate the association between fear of falling and gait performance in well-functioning older persons. DESIGN: Survey. SETTING: Community. PARTICIPANTS: Subjects (N=860, aged 65-70y) were a subsample of participants enrolled in a cohort study who underwent gait measurements. INTERVENTIONS: Not applicable. MAIN OUTCOME MEASURES: Fear of falling and its severity were assessed by 2 questions about fear and related activity restriction. Gait performance, including gait variability, was measured using body-fixed sensors. RESULTS: Overall, 29.6% (210/860) of the participants reported fear of falling, with 5.2% (45/860) reporting activity restriction. Fear of falling was associated with reduced gait performance, including increased gait variability. A gradient in gait performance was observed from participants without fear to those reporting fear without activity restriction and those reporting both fear and activity restriction. For instance, stride velocity decreased from 1.15+/-.15 to 1.11+/-.17 to 1.00+/-.19 m/s (P<.001) in participants without fear, with fear but no activity restriction and with fear and activity restriction, respectively. In multivariate analysis, fear of falling with activity restriction remained associated with reduced gait performance, independent of sex, comorbidity, functional status, falls history, and depressive symptoms. CONCLUSIONS: In these well-functioning older people, those reporting fear of falling with activity restriction had reduced gait performance and increased gait variability, independent of health and functional status. These relationships suggest that early interventions targeting fear of falling might potentially help to prevent its adverse consequences on mobility and function in similar populations.
Resumo:
Normal myocardium adapts to increase of nutritional fatty acid supply by upregulation of regulatory proteins of the fatty acid oxidation pathway. Because advanced heart failure is associated with reduction of regulatory proteins of fatty acid oxidation, we hypothesized that failing myocardium may not be able to adapt to increased fatty acid intake and therefore undergo lipid accumulation, potentially aggravating myocardial dysfunction. We determined the effect of high-fat diet in transgenic mice with overexpression of angiotensinogen in the myocardium (TG1306/R1). TG1306/R1 mice develop ANG II-mediated left ventricular hypertrophy, and at one year of age approximately half of the mice present heart failure associated with reduced expression of regulatory proteins of fatty acid oxidation and reduced palmitate oxidation during ex vivo working heart perfusion. Hypertrophied hearts from TG1306/R1 mice without heart failure adapted to high-fat feeding, similarly to hearts from wild-type mice, with upregulation of regulatory proteins of fatty acid oxidation and enhancement of palmitate oxidation. There was no myocardial lipid accumulation or contractile dysfunction. In contrast, hearts from TG1306/R1 mice presenting heart failure were unable to respond to high-fat feeding by upregulation of fatty acid oxidation proteins and enhancement of palmitate oxidation. This resulted in accumulation of triglycerides and ceramide in the myocardium, and aggravation of contractile dysfunction. In conclusion, hearts with ANG II-induced contractile failure have lost the ability to enhance fatty acid oxidation in response to increased fatty acid supply. The ensuing accumulation of lipid compounds may play a role in the observed aggravation of contractile dysfunction.
Resumo:
MAP1a is a microtubule-associated protein with an apparent molecular weight of 360 kDa that is found in the axonal and dendritic processes of neurons. Two monoclonal anti-MAP1a antibodies anti-A and anti-BW6, revealed different epitope distributions in the adult mouse cerebellum. Anti-A stained Purkinje and granule cells uniformly throughout the cerebellum. In contrast, anti-BW6 selectively stained the dendriites of a subset of Purkinje cells, revealing parasagittal bands of immunoreactivity in the molecular layer. The compartmentation of the BW6 epitope was compared to the Purkine cells as revealed by immunostaining with anti-zebrin II, a well known antigen expressed selectively by bands of Purkinje cells. The anti-BW6 staining pattern was complementary to the zebrin II bands, the zebrin II- Purkinjke cells having BW6+ dendrites. These results demonstrate that MAP1a is present in two forms in the mouse cerebellum, one of which is segregated into parasagittal bands. This may indicate a unique MAP1a isoform or may reflect differences in the metabolic states of Purkinje cell classes, and regional differences in their functions.
Resumo:
African tick-bite fever (ATBF) is a newly described spotted fever rickettsiosis that frequently presents with multiple eschars in travelers returning from sub-Saharan Africa and, to a lesser extent, from the West Indies. It is caused by the bite of an infected Amblyomma tick, whose hunting habits explain the typical presence of multiple inoculation skin lesions and the occurrence of clustered cases. The etiological agent of ATBF is Rickettsia africae, an emerging tick-borne pathogenic bacterium. We describe herein a cluster of five cases of ATBF occurring in Swiss travelers returning from South Africa. The co-incidental infections in these five patients and the presence of multiple inoculation eschars, two features pathognomonic of this rickettsial disease, suggested the diagnosis of ATBF. Indeed, the presence of at least one inoculation eschar is observed in 53-100% of cases and multiple eschars in 21-54%. Two patients presented regional lymphadenitis and one a mild local lymphangitis. Though a cutaneous rash is described in 15-46% of cases, no rash was observed in our series. ATBF was confirmed by serology. Thus, ATBF has recently emerged as one of the most important causes of flu-like illness in travelers returning from Southern Africa. The presence of one or multiple eschars of inoculation is an important clinical clue to the diagnosis. It can be confirmed by serology or by PCR of a biopsy of the eschar. Culture can also be done in reference laboratories. Dermatologists and primary care physicians should know this clinical entity, since an inexpensive and efficient treatment is available.