940 resultados para Deep Brain-stimulation


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Strongly rectifying IRK-type inwardly rectifying K+ channels are involved in the control of neuronal excitability in the mammalian brain. Whole-cell patch-clamp experiments show that cloned rat IRK1 (Kir 2.1) channels, when heterologously expressed in mammalian COS-7 cells, are inhibited following the activation of coexpressed serotonin (5-hydroxytryptamine) type 1A receptors by receptor agonists. Inhibition is mimicked by internal perfusion with GTP[gamma-S] and elevation of internal cAMP concentrations. Addition of the catalytic subunits of protein kinase A (PKA) to the internal recording solution causes complete inhibition of wild-type IRK1 channels, but not of mutant IRK1(S425N) channels in which a C-terminal PKA phosphorylation site has been removed. Our data suggest that in the nervous system serotonin may negatively control IRK1 channel activity by direct PKA-mediated phosphorylation.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We report that fast (mainly 30- to 40-Hz) coherent electric field oscillations appear spontaneously during brain activation, as expressed by electroencephalogram (EEG) rhythms, and they outlast the stimulation of mesopontine cholinergic nuclei in acutely prepared cats. The fast oscillations also appear during the sleep-like EEG patterns of ketamine/xylazine anesthesia, but they are selectively suppressed during the prolonged phase of the slow (<1-Hz) sleep oscillation that is associated with hyperpolarization of cortical neurons. The fast (30- to 40-Hz) rhythms are synchronized intracortically within vertical columns, among closely located cortical foci, and through reciprocal corticothalamic networks. The fast oscillations do not reverse throughout the depth of the cortex. This aspect stands in contrast with the conventional depth profile of evoked potentials and slow sleep oscillations that display opposite polarity at the surface and midlayers. Current-source-density analyses reveal that the fast oscillations are associated with alternating microsinks and microsources across the cortex, while the evoked potentials and the slow oscillation display a massive current sink in midlayers, confined by two sources in superficial and deep layers. The synchronization of fast rhythms and their high amplitudes indicate that the term "EEG desynchronization," used to designate brain-aroused states, is incorrect and should be replaced with the original term, "EEG activation" [Moruzzi, G. & Magoun, H.W. (1949) Electroencephalogr. Clin. Neurophysiol. 1, 455-473].

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The previously established cortical representation of rat whiskers in layer IV of the cortex contains distinct cylindrical columns of cellular aggregates, which are termed barrels and correlate in a one-to-one relation to whiskers on the contralateral rat face. In the present study, functional magnetic resonance imaging (fMRI) of the rat brain was used to map whisker barrel activation during mechanical up-down movement (+/- 2.5 mm amplitude at 8 Hz) of single/multiple whisker(s). Multislice gradient echo fMRI experiments were performed at 7 T with in-plane image resolution of 220 x 220 microns, slice thickness of 1 mm, and echo time of 16 ms. Highly significant (P < 0.001) and localized contralateral regions of activation were observed upon stimulation of single/multiple whisker(s). In all experiments (n = 10), the locations of activation relative to bregma and midline were highly correlated with the neuroanatomical position of the corresponding whisker barrels, and the results were reproducible intra- and interanimal. Our results indicate that fMRI based on blood oxygenation level-dependent image contrast has the sensitivity to depict activation of a single whisker barrel in the rat brain. This noninvasive technique will supplement existing methods in the study of rat barrel cortex and should be particularly useful for the long-term investigations of central nervous system in the same animal.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

As a measure of dynamical structure, short-term fluctuations of coherence between 0.3 and 100 Hz in the electroencephalogram (EEG) of humans were studied from recordings made by chronic subdural macroelectrodes 5-10 mm apart, on temporal, frontal, and parietal lobes, and from intracranial probes deep in the temporal lobe, including the hippocampus, during sleep, alert, and seizure states. The time series of coherence between adjacent sites calculated every second or less often varies widely in stability over time; sometimes it is stable for half a minute or more. Within 2-min samples, coherence commonly fluctuates by a factor up to 2-3, in all bands, within the time scale of seconds to tens of seconds. The power spectrum of the time series of these fluctuations is broad, extending to 0.02 Hz or slower, and is weighted toward the slower frequencies; little power is faster than 0.5 Hz. Some records show conspicuous swings with a preferred duration of 5-15s, either irregularly or quasirhythmically with a broad peak around 0.1 Hz. Periodicity is not statistically significant in most records. In our sampling, we have not found a consistent difference between lobes of the brain, subdural and depth electrodes, or sleeping and waking states. Seizures generally raise the mean coherence in all frequencies and may reduce the fluctuations by a ceiling effect. The coherence time series of different bands is positively correlated (0.45 overall); significant nonindependence extends for at least two octaves. Coherence fluctuations are quite local; the time series of adjacent electrodes is correlated with that of the nearest neighbor pairs (10 mm) to a coefficient averaging approximately 0.4, falling to approximately 0.2 for neighbors-but-one (20 mm) and to < 0.1 for neighbors-but-two (30 mm). The evidence indicates fine structure in time and space, a dynamic and local determination of this measure of cooperativity. Widely separated frequencies tending to fluctuate together exclude independent oscillators as the general or usual basis of the EEG, although a few rhythms are well known under special conditions. Broad-band events may be the more usual generators. Loci only a few millimeters apart can fluctuate widely in seconds, either in parallel or independently. Scalp EEG coherence cannot be predicted from subdural or deep recordings, or vice versa, and intracortical microelectrodes show still greater coherence fluctuation in space and time. Widely used computations of chaos and dimensionality made upon data from scalp or even subdural or depth electrodes, even when reproducible in successive samples, cannot be considered representative of the brain or the given structure or brain state but only of the scale or view (receptive field) of the electrodes used. Relevant to the evolution of more complex brains, which is an outstanding fact of animal evolution, we believe that measures of cooperativity are likely to be among the dynamic features by which major evolutionary grades of brains differ.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

L-Glutamate is the most common excitatory neurotransmitter in the brain and plays a crucial role in neuronal plasticity as well as in neurotoxicity. While a large body of literature describes the induction of immediate-early genes, including c-fos, fosB, c-jun, junB, zif/268, and krox genes by glutamate and agonists in neurons, very little is known about preexisting transcription factors controlling the induction of such genes. This prompted us to investigate whether stimulation of glutamate receptors can activate NF-kappa B, which is present in neurons in either inducible or constitutive form. Here we report that brief treatments with kainate or high potassium strongly activated NF-kappa B in granule cells from rat cerebellum. This was detected at the single cell level by immunostaining with a monoclonal antibody that selectively reacts with the transcriptionally active, nuclear form of NF-kappa B p65. The activation of NF-kappa B could be blocked with the antioxidant pyrrolidine dithiocarbamate, suggesting the involvement of reactive oxygen intermediates. The data may explain the kainate-induced cell surface expression of major histocompatibility complex class I molecules, which are encoded by genes known to be controlled by NF-kappa B. Moreover, NF-kappa B activity was found to change dramatically in neurons during development of the cerebellum between days 5 and 7 after birth.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Agonists stimulate guanylyl 5'-[gamma-[35S]thio]-triphosphate (GTP[gamma-35S]) binding to receptor-coupled guanine nucleotide binding protein (G proteins) in cell membranes as revealed in the presence of excess GDP. We now report that this reaction can be used to neuroanatomically localize receptor-activated G proteins in brain sections by in vitro autoradiography of GTP[gamma-35S] binding. Using the mu opioid-selective peptide [D-Ala2,N-MePhe4,Gly5-ol]enkephalin (DAMGO) as an agonist in rat brain sections and isolated thalamic membranes, agonist stimulation of GTP[gamma-35S] binding required the presence of excess GDP (1-2 mM GDP in sections vs. 10-30 microM GDP in membranes) to decrease basal G-protein activity and reveal agonist-stimulated GTP[gamma-35S] binding. Similar concentrations of DAMGO were required to stimulate GTP[gamma-35S] binding in sections and membranes. To demonstrate the general applicability of the technique, agonist-stimulated GTP[gamma-35S] binding in tissue sections was assessed with agonists for the mu opioid (DAMGO), cannabinoid (WIN 55212-2), and gamma-aminobutyric acid type B (baclofen) receptors. For opioid and cannabinoid receptors, agonist stimulation of GTP[gamma-35S] binding was blocked by incubation with agonists in the presence of the appropriate antagonists (naloxone for mu opioid and SR-141716A for cannabinoid), thus demonstrating that the effect was specifically receptor mediated. The anatomical distribution of agonist-stimulated GTP[gamma-35S] binding qualitatively paralleled receptor distribution as determined by receptor binding autoradiography. However, quantitative differences suggest that variations in coupling efficiency may exist between different receptors in various brain regions. This technique provides a method of functional neuroanatomy that identifies changes in the activation of G proteins by specific receptors.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Functional magnetic resonance imaging (fMRI) is a tool for mapping brain function that utilizes neuronal activity-induced changes in blood oxygenation. An efficient three-dimensional fMRI method is presented for imaging brain activity on conventional, widely available, 1.5-T scanners, without additional hardware. This approach uses large magnetic susceptibility weighting based on the echo-shifting principle combined with multiple gradient echoes per excitation. Motor stimulation, induced by self-paced finger tapping, reliably produced significant signal increase in the hand region of the contralateral primary motor cortex in every subject tested.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Abstinence from chronic administration of various drugs of abuse such as ethanol, opiates, and psychostimulants results in withdrawal syndromes largely unique to each drug class. However, one symptom that appears common to these withdrawal syndromes in humans is a negative affective/motivational state. Prior work in rodents has shown that elevations in intracranial self-stimulation (ICSS) reward thresholds provide a quantitative index that serves as a model for the negative affective state during withdrawal from psychostimulants and opiates. The current study sought to determine whether ICSS threshold elevations also accompany abstinence from chronic ethanol exposure sufficient to induce physical dependence. Rats prepared with stimulating electrodes in the lateral hypothalamus were trained in a discrete-trial current-intensity ICSS threshold procedure; subsequently they were subjected to chronic ethanol administration in ethanol vapor chambers (average blood alcohol level of 197 mg/dl). A time-dependent elevation in ICSS thresholds was observed following removal from the ethanol, but not the control, chambers. Thresholds were significantly elevated for 48 hr after cessation of ethanol exposure, with peak elevations observed at 6-8 hr. Blood alcohol levels were directly correlated with the magnitude of peak threshold elevation. Ratings of traditional overt signs of withdrawal showed a similar time course of expression and resolution. The results suggest that decreased function of reward systems (elevations in reward thresholds) is a common element of withdrawal from chronic administration of several diverse classes of abused drugs.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Motion-induced blindness (MIB) is a phenomenon, perhaps related to perceptual rivalry, where stationary targets disappear and reappear in a cyclic mode when viewed against a background (mask) of coherent, apparent 3-D motion. Since MIB has recently been shown to share similar temporal properties with binocular rivalry, we probed the appearance-disappearance cycle of MIB using unilateral, single-pulse transcranial magnetic stimulation (TMS)-a manipulation that has previously been shown to influence binocular rivalry. Effects were seen for both hemispheres when the timing of TMS was determined prospectively on the basis of a given subject's appearance-disappearance cycle, so that it occurred on average around 300 ms before the time of perceptual switch. Magnetic stimulation of either hemisphere shortened the time to switch from appearance to disappearance and vice versa. However, TMS of left posterior parietal cortex more selectively shortened the disappearance time of the targets if delivered in phase with the disappearance cycle, but lengthened it if TMS was delivered in the appearance phase after the perceptual switch. Opposite effects were seen in the right hemisphere, although less marked than the left-hemisphere effects. As well as sharing temporal characteristics with binocular rivalry, MIB therefore seems to share a similar underlying mechanism of interhemispheric modulation. Interhemispheric switching may thus provide a common temporal framework for uniting the diverse, multilevel phenomena of perceptual rivalry.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The perception of an object as a single entity within a visual scene requires that its features are bound together and segregated from the background and/or other objects. Here, we used magnetoencephalography (MEG) to assess the hypothesis that coherent percepts may arise from the synchronized high frequency (gamma) activity between neurons that code features of the same object. We also assessed the role of low frequency (alpha, beta) activity in object processing. The target stimulus (i.e. object) was a small patch of a concentric grating of 3c/°, viewed eccentrically. The background stimulus was either a blank field or a concentric grating of 3c/° periodicity, viewed centrally. With patterned backgrounds, the target stimulus emerged--through rotation about its own centre--as a circular subsection of the background. Data were acquired using a 275-channel whole-head MEG system and analyzed using Synthetic Aperture Magnetometry (SAM), which allows one to generate images of task-related cortical oscillatory power changes within specific frequency bands. Significant oscillatory activity across a broad range of frequencies was evident at the V1/V2 border, and subsequent analyses were based on a virtual electrode at this location. When the target was presented in isolation, we observed that: (i) contralateral stimulation yielded a sustained power increase in gamma activity; and (ii) both contra- and ipsilateral stimulation yielded near identical transient power changes in alpha (and beta) activity. When the target was presented against a patterned background, we observed that: (i) contralateral stimulation yielded an increase in high-gamma (>55 Hz) power together with a decrease in low-gamma (40-55 Hz) power; and (ii) both contra- and ipsilateral stimulation yielded a transient decrease in alpha (and beta) activity, though the reduction tended to be greatest for contralateral stimulation. The opposing power changes across different regions of the gamma spectrum with 'figure/ground' stimulation suggest a possible dual role for gamma rhythms in visual object coding, and provide general support of the binding-by-synchronization hypothesis. As the power changes in alpha and beta activity were largely independent of the spatial location of the target, however, we conclude that their role in object processing may relate principally to changes in visual attention.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Background & Aims: Current models of visceral pain processing derived from metabolic brain imaging techniques fail to differentiate between exogenous (stimulus-dependent) and endogenous (non-stimulus-specific) neural activity. The aim of this study was to determine the spatiotemporal correlates of exogenous neural activity evoked by painful esophageal stimulation. Methods: In 16 healthy subjects (8 men; mean age, 30.2 ± 2.2 years), we recorded magnetoencephalographic responses to 2 runs of 50 painful esophageal electrical stimuli originating from 8 brain subregions. Subsequently, 11 subjects (6 men; mean age, 31.2 ± 1.8 years) had esophageal cortical evoked potentials recorded on a separate occasion by using similar experimental parameters. Results: Earliest cortical activity (P1) was recorded in parallel in the primary/secondary somatosensory cortex and posterior insula (∼85 ms). Significantly later activity was seen in the anterior insula (∼103 ms) and cingulate cortex (∼106 ms; P = .0001). There was no difference between the P1 latency for magnetoencephalography and cortical evoked potential (P = .16); however, neural activity recorded with cortical evoked potential was longer than with magnetoencephalography (P = .001). No sex differences were seen for psychophysical or neurophysiological measures. Conclusions: This study shows that exogenous cortical neural activity evoked by experimental esophageal pain is processed simultaneously in somatosensory and posterior insula regions. Activity in the anterior insula and cingulate - brain regions that process the affective aspects of esophageal pain - occurs significantly later than in the somatosensory regions, and no sex differences were observed with this experimental paradigm. Cortical evoked potential reflects the summation of cortical activity from these brain regions and has sufficient temporal resolution to separate exogenous and endogenous neural activity. © 2005 by the American Gastroenterological Association.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The 'attentional blink' (AB) reflects a limitation in the ability to identify multiple items in a stream of rapidly presented information. Repetitive transcranial magnetic stimulation (rTMS), applied to a site over the right posterior parietal cortex, reduced the magnitude of the AB to visual stimuli, whilst no effect of rTMS was found when stimulation took place at a control site. The data confirm that the posterior parietal cortex may play a critical role in temporal as well as spatial aspects of visual attention.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In accordance with its central role in basal ganglia circuitry, changes in the rate of action potential firing and pattern of activity in the globus pallidus (GP)-subthalamic nucleus (STN) network are apparent in movement disorders. In this study we have developed a mouse brain slice preparation that maintains the functional connectivity between the GP and STN in order to assess its role in shaping and modulating bursting activity promoted by pharmacological manipulations. Fibre-tract tracing studies indicated that a parasagittal slice cut 20 deg to the midline best preserved connectivity between the GP and the STN. IPSCs and EPSCs elicited by electrical stimulation confirmed connectivity from GP to STN in 44/59 slices and from STN to GP in 22/33 slices, respectively. In control slices, 74/76 (97%) of STN cells fired tonically at a rate of 10.3 ± 1.3 Hz. This rate and pattern of single spiking activity was unaffected by bath application of the GABAA antagonist picrotoxin (50 μM, n = 9) or the glutamate receptor antagonist (6-cyano-7-nitroquinoxaline-2, 3-dione (CNQX) 10 μM, n = 8). Bursting activity in STN neurones could be induced pharmacologically by application of NMDA alone (20 μM, 3/18 cells, 17%) but was more robust if NMDA was applied in conjunction with apamin (20-100 nM, 34/77 cells, 44%). Once again, neither picrotoxin (50 μM, n = 5) nor CNQX (10 μM, n = 5) had any effect on the frequency or pattern of the STN neurone activity while paired STN and GP recordings of tonic and bursting activity show no evidence of coherent activity. Thus, in a mouse brain slice preparation where functional GP-STN connectivity is preserved, no regenerative synaptically mediated activity indicative of a dynamic network is evident, either in the resting state or when neuronal bursting in both the GP and STN is generated by application of NMDA/apamin. This difference from the brain in Parkinson's disease may be attributed either to insufficient preservation of cortico-striato-pallidal or cortico-subthalamic circuitry, and/or an essential requirement for adaptive changes resulting from dopamine depletion for the expression of network activity within this tissue complex. © The Physiological Society 2005.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In this study I investigated the mechanisms of neuronal network oscillatory activity in rat M1 using pharmacological manipulations and electrical stimulation protocols, employing the in vitro brain slice technique in rat and magnetoencephalography (MEG) in man. Co-application of kainic acid and carbachol generated in vitro beta oscillatory activity in all layers in M1. Analyses indicated that oscillations originated from deep layers and indicated significant involvement of GABAA receptors and gap junctions. A modulatory role of GABAB, NMDA, and dopamine receptors was also evident. Intracellular recordings from fast-spiking (FS) GABAergic inhibitory cells revealed phase-locked action potentials (APs) on every beta cycle. Glutamatergic excitatory regular-spiking (RS) and intrinsically-bursting (IB) cells both received phase locked inhibitory postsynaptic potentials, but did not fire APs on every cycle, suggesting the dynamic involvement of different pools of neurones in the overall population oscillations. Stimulation evoked activity at high frequency (HFS; 125Hz) evoked gamma oscillations and reduced ongoing beta activity. 20Hz stimulation promoted theta or gamma oscillations whilst 4Hz stimulation enhanced beta power at theta frequency. I also investigated the modulation of pathological slow wave (theta and beta) oscillatory activity using magnetoencephalography. Abnormal activity was suppressed by sub-sedative doses of GABAA receptor modulator zolpidem and the observed desynchronising effect correlated well with improved sensorimotor function. These studies indicate a fundamental role for inhibitory neuronal networks in the patterning beta activity and suggest that cortical HFS in PD re-patterns abnormally enhanced M1 network activity by modulating the activity of FS cells. Furthermore, pathological oscillation may be common to many neuropathologies and may be an important future therapeutic target.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Continuous theta burst stimulation (cTBS) is a repetitive transcranial magnetic stimulation protocol that can inhibithumanmotor cortex (M1) excitability and impair movement for ≤1 h. While offering valuable insights into brain function and potential therapeutic benefits, these neuroplastic effects are highly variable between individuals. The source of this variability, and the electrophysiological mechanisms underlying the inhibitory after-effects, are largely unknown. In this regard, oscillatory activity at beta frequency (15-35 Hz) is of particular interest as it is elevated in motor disorders such as Parkinson's disease and modulated during the generation of movements. Here, we used a source-level magnetoencephalography approach to investigate the hypothesis that the presence of neuroplastic effects following cTBS is associated with concurrent changes in oscillatory M1 beta activity. M1 cortices were localized with a synthetic aperture magnetometry beamforming analysis of visually cued index finger movements. Virtual electrode analysis was used to reconstruct the spontaneous and movement-related oscillatory activity in bilateral M1 cortices, before and from 10 to 45 min after cTBS. We demonstrate that 40 s of cTBS applied over left M1 reduced corticospinal excitability in the right index finger of 8/16 participants. In these responder participants only, cTBS increased the power of the spontaneous beta oscillations in stimulated M1 and delayed reaction times in the contralateral index finger. No further changes were observed in the latency or power of movement-related beta oscillations. These data provide insights into the electrophysiological mechanisms underlying cTBS-mediated impairment of motor function and demonstrate the association between spontaneous oscillatory beta activity in M1 and the inhibition of motor function. © 2013 the authors.