444 resultados para Decoupling
Resumo:
Pervasive computing applications must be sufficiently autonomous to adapt their behaviour to changes in computing resources and user requirements. This capability is known as context-awareness. In some cases, context-aware applications must be implemented as autonomic systems which are capable of dynamically discovering and replacing context sources (sensors) at run-time. Unlike other types of application autonomy, this kind of dynamic reconfiguration has not been sufficiently investigated yet by the research community. However, application-level context models are becoming common, in order to ease programming of context-aware applications and support evolution by decoupling applications from context sources. We can leverage these context models to develop general (i.e., application-independent) solutions for dynamic, run-time discovery of context sources (i.e., context management). This paper presents a model and architecture for a reconfigurable context management system that supports interoperability by building on emerging standards for sensor description and classification.
Resumo:
The Cervarola Sandstones Formation (CSF), Aquitanian-Burdigalian in age, was deposited in an elongate, NW-stretched foredeep basin formed in front of the growing Northern Apennines orogenic wedge. The stratigraphic succession of the CSF, in the same way of other Apennine foredeep deposits, records the progressive closure of the basin due to the propagation of thrust fronts toward north-east, i.e. toward the outer and shallower foreland ramp. This process produce a complex foredeep characterized by synsedimentary structural highs and depocenters that can strongly influence the lateral and vertical turbidite facies distribution. Of consequence the main aim of this work is to describe and discuss this influence on the basis of a new high-resolution stratigraphic framework performed by measuring ten stratigraphic logs, for a total thickness of about 2000m, between the Secchia and Scoltenna Valleys (30km apart). In particular, the relationship between the turbidite sedimentation and the ongoing tectonic activity during the foredeep evolution has been describe through various stratigraphic cross sections oriented parallel and perpendicular to the main tectonic structures. On the basis of the high resolution physical stratigraphy of the studied succession, we propose a facies tract and an evolutionary model for the Cervarola Sandstones in the studied area. Thanks to these results and the analogies with others foredeep deposits of the northern Apennines, such as the Marnoso-arenacea Formation, the Cervarola basin has been interpreted as a highly confined foredeep controlled by an intense synsedimentary tectonic activity. The most important evidences supporting this hypothesis are: 1) the upward increase, in the studied stratigraphic succession (about 1000m thick), of sandstone/mudstone ratio, grain sizes and Ophiomorpha-type trace fossils testifying the high degree of flow deceleration related to the progressive closure and uplift of the foredeep. 2) the occurrence in the upper part of the stratigraphic succession of coarse-grained massive sandstones overlain by tractive structures such as megaripples and traction carpets passing downcurrent into fine-grained laminated contained-reflected beds. This facies tract is interpreted as related to deceleration and decoupling of bipartite flows with the deposition of the basal dense flows and bypass of the upper turbulent flows. 3) the widespread occurrence of contained reflected beds related to morphological obstacles created by tectonic structures parallel and perpendicular to the basin axis (see for example the Pievepelago line). 4) occurrence of intra-formational slumps, constituted by highly deformed portion of fine-grained succession, indicating a syn-sedimentary tectonic activity of the tectonic structures able to destabilize the margins of the basin. These types of deposits increase towards the upper part of the stratigraphic succession (see points 1 and 2) 5) the impressive lateral facies changes between intrabasinal topographic highs characterized by fine-grained and thin sandstone beds and marlstones and depocenters characterized by thick to very thick coarse-grained massive sandstones. 6) the common occurrence of amalgamation surfaces, flow impact structures and mud-draped scours related to sudden deceleration of the turbidite flows induced by the structurally-controlled confinement and morphological irregularities. In conclusion, the CSF has many analogies with the facies associations occurring in other tectonically-controlled foredeeps such as those of Marnoso-arenacea Formation (northern Italy) and Annot Sandstones (southern France) showing how thrust fronts and transversal structures moving towards the foreland, were able to produce a segmented foredeep that can strongly influence the turbidity current deposition.
Resumo:
The chemical functionality within porous architectures dictates their performance as heterogeneous catalysts; however, synthetic routes to control the spatial distribution of individual functions within porous solids are limited. Here we report the fabrication of spatially orthogonal bifunctional porous catalysts, through the stepwise template removal and chemical functionalization of an interconnected silica framework. Selective removal of polystyrene nanosphere templates from a lyotropic liquid crystal-templated silica sol–gel matrix, followed by extraction of the liquid crystal template, affords a hierarchical macroporous–mesoporous architecture. Decoupling of the individual template extractions allows independent functionalization of macropore and mesopore networks on the basis of chemical and/or size specificity. Spatial compartmentalization of, and directed molecular transport between, chemical functionalities affords control over the reaction sequence in catalytic cascades; herein illustrated by the Pd/Pt-catalysed oxidation of cinnamyl alcohol to cinnamic acid. We anticipate that our methodology will prompt further design of multifunctional materials comprising spatially compartmentalized functions.
Resumo:
This thesis presents a comparison of integrated biomass to electricity systems on the basis of their efficiency, capital cost and electricity production cost. Four systems are evaluated: combustion to raise steam for a steam cycle; atmospheric gasification to produce fuel gas for a dual fuel diesel engine; pressurised gasification to produce fuel gas for a gas turbine combined cycle; and fast pyrolysis to produce pyrolysis liquid for a dual fuel diesel engine. The feedstock in all cases is wood in chipped form. This is the first time that all three thermochemical conversion technologies have been compared in a single, consistent evaluation.The systems have been modelled from the transportation of the wood chips through pretreatment, thermochemical conversion and electricity generation. Equipment requirements during pretreatment are comprehensively modelled and include reception, storage, drying and communication. The de-coupling of the fast pyrolysis system is examined, where the fast pyrolysis and engine stages are carried out at separate locations. Relationships are also included to allow learning effects to be studied. The modelling is achieved through the use of multiple spreadsheets where each spreadsheet models part of the system in isolation and the spreadsheets are combined to give the cost and performance of a whole system.The use of the models has shown that on current costs the combustion system remains the most cost-effective generating route, despite its low efficiency. The novel systems only produce lower cost electricity if learning effects are included, implying that some sort of subsidy will be required during the early development of the gasification and fast pyrolysis systems to make them competitive with the established combustion approach. The use of decoupling in fast pyrolysis systems is a useful way of reducing system costs if electricity is required at several sites because• a single pyrolysis site can be used to supply all the generators, offering economies of scale at the conversion step. Overall, costs are much higher than conventional electricity generating costs for fossil fuels, due mainly to the small scales used. Biomass to electricity opportunities remain restricted to niche markets where electricity prices are high or feed costs are very low. It is highly recommended that further work examines possibilities for combined beat and power which is suitable for small scale systems and could increase revenues that could reduce electricity prices.
Resumo:
To elucidate the structures of orgamc molecules in solution using pulse FT NMR, heteronuclear pulse sequence experiments to probe carbon-13 (13C) and proton (1H) spin systems are invaluable. The one-dimensional insensitive nucleus detected PENDANT experiment finds popular use for structure determination via one-bond 13C-1H scalar couplings. PENDANT facilitates the desired increase in 13C signal-to-noise ratio, and unlike many other pulse sequence experiments (e.g., refocused INEPT and DEPT), allows the simultaneous detection of 13C quaternary nuclei. The tlrst chapter herein details the characterisation of PENDANT and the successful rectification of spectral anomalies that occur when it is used without proton broadband decoupling. Multiple-bond (long-range) l3C-1H scalar coupling correlations can yield important bonding information. When the molecule under scrutiny is devoid of proton spectral crowding, and more sensitive 'inverse' pulse sequence experiments are not available, one may use insensitive nucleus detected long-range selective one-dimensional correlation methods, rather than more time consuming and insensitive multidimensional analogues. To this end a novel long-range selective one-dimensional correlation pulse sequence experiment has been invented. Based on PENDANT, the new experiment is shown to rival the popular selective INEPT technique because it can determine the same correlations while simultaneously detecting isolated 13C quaternary nuclei. INEPT cannot facilitate this, potentially leaving other important quaternary nuclei undetected. The novel sequence has been modified further to yield a second novel experiment that simultaneously yields selective 13C transient nOe data. Consequently, the need to perform the two experiments back-to-back is conveniently removed, and the experimental time reduced. Finally, the SNARE pulse sequence was further developed. SNARE facilitates the reduction of experimental time by accelerating the relaxation of protons upon which pulse sequences, to which SNARE is appended, relies. It is shown, contrary to the original publication, that reiaxation time savings can be derived from negative nOes.
Resumo:
The kinetics and mechanisms of the ring-opening polymerization of oxetane were studied using cationic and coordinated anionic catalysts. The cationic initiators used were BF30Et2!/ethanol, BF30Et2!/ethanediol and BF30Et2/propantriol. Kinetic determinations with the BF30Et2/diol system indicated that a 1: 1 BF3:0H ratio gave the maximum rate of polymerization and this ratio was employed to detenmne the overall rates of polymerization. An overall second-order dependence was obtained when the system involved ethanediol or propantriol as co-catalyst and a 3/2-order dependence with ethanol, in each case the monomer gave a first-order relationship. This suggested that two mechanisms accounted for the cationic polymerization. These mechanisms were investigated and further evidence for these was obtained from the study of the complex formation of BF30Et2 and the co-catalysts by 1H NMR. Molecular weight studies (using size-exclusion chromatography) indicated that the hydroxyl ion acted as a chain transfer reagent when the [OH] > [BF3]. A linear relationship was observed when the number average molecular weight was plotted against [oxetane] at constant [BF3:0H], and similarly a linear dependency was observed on the BF3:0H 1:1 adduct at constant oxetane concentration. Copolymerization of oxetane and THF was carried out using BF30Et2/ethanol system. The reactivity ratios were calculated as rOXT = 1.2 ± 0.30 and rTHF = 0.14 ± 0.03. These copolymers were random copolymers with no evidence of oligomer formation. The coordinated anionic catalyst, porphinato-aluminium chloride [(TPP)AICl], was used to produce a living polymerization of oxetane. An overall third-order kinetics was obtained, with a second-order with respect to the [(TPP)AICl] and a first-order with respect to the [oxetane] and a mechanism was postulated using these results. The stereochemistry of [(TPP)AlCl] catalyst was investigated using cyclohexene and cyclopentene oxide monomers, using extensive 1H NMR, 2-D COSY and decoupling NMR techniques it was concluded that [(TPP)AlCl] gave rise to stereoregular polymers.
Resumo:
We investigate the integration of the European peripheral financial markets with Germany, France, and the UK using a combination of tests for structural breaks and return correlations derived from several multivariate stochastic volatility models. Our findings suggest that financial integration intensified in anticipation of the Euro, further strengthened by the EMU inception, and amplified in response to the 2007/2008 financial crisis. Hence, no evidence is found of decoupling of the equity markets in more troubled European countries from the core. Interestingly, the UK, despite staying outside the EMU, is not worse integrated with the GIPSI than Germany or France. © 2013 Elsevier B.V.
Resumo:
An apparatus was designed and constructed which enabled material to be melted and heated to a maximum temperature of 1000C and then flooded with a pre-heated liquid. A series of experiments to investigate the thermal interaction between molten metals (aluminium, lead and tin) and sub-cooled water were conducted. The cooling rates of the molten materials under conditions of flooding were measured with a high speed-thermocouple and recorded with a transient recorder. A simplified model for calculating heat fluxes and metal surface temperatures was developed and used. Experimental results yielded boiling heat transfer in the transition film and stable film regions of the classic boiling curve. Maximum and minimum heat fluxes were observed at nucleate boiling crisis and the Leidenfrost point respectively. Results indicate that heat transfer from molten metals to sub-cooled water is a function of temperature and coolant depth and not a direct function of the physical properties of the metals. Heat transfer in the unstable transition film boiling region suggests that boiling dynamics in this region where a stationary molten metal is under pool boiling conditions at atmospheric pressure would not initiate a fuel-coolant interaction. Low heat fluxes around the Leidenfrost point would provide efficient fuel-coolant decoupling by a stable vapour blanket to enable coarse mixing of the fuel and coolant to occur without appreciable loss of thermal energy from the fuel. The research was conducted by Gareph Boxley and was submitted for the degree of PhD at the University of Aston in Birmingham in 1980.
Resumo:
Electric vehicles (EVs) provide a feasible solution to reducing greenhouse gas emissions and thus become a hot topic for research and development. Switched reluctance motors (SRMs) are one of promised motors for EV applications. In order to extend the EVs’ driving miles, the use of photovoltaic (PV) panels on the vehicle helps decrease the reliance on vehicle batteries. Based on phase winding characteristics of SRMs, a tri-port converter is proposed in this paper to control the energy flow between the PV panel, battery and SRM. Six operating modes are presented, four of which are developed for driving and two for standstill on-board charging. In the driving modes, the energy decoupling control for maximum power point tracking (MPPT) of the PV panel and speed control of the SRM are realized. In the standstill charging modes, a grid-connected charging topology is developed without a need for external hardware. When the PV panel directly charges the battery, a multi-section charging control strategy is used to optimize energy utilization. Simulation results based on Matlab/Simulink and experiments prove the effectiveness of the proposed tri-port converter, which has potential economic implications to improve the market acceptance of EVs.
Resumo:
This paper proposes an online sensorless rotor position estimation technique for switched reluctance motors (SRMs) using just one current sensor. It is achieved by first decoupling the excitation current from the bus current. Two phase-shifted pulse width modulation signals are injected into the relevant lower transistors in the asymmetrical half-bridge converter for short intervals during each current fundamental cycle. Analog-to-digital converters are triggered in the pause middles of the dual pulse to separate the bus current for excitation current recognition. Next, the rotor position is estimated from the excitation current, by a current-rise-time method in the current-chopping-control mode in a low-speed operation and a current-gradient method in the voltage-pulse-control mode in a high-speed operation. The proposed scheme requires only a bus current sensor and a minor change to the converter circuit, without a need for individual phase current sensors or additional detection devices, achieving a more compact and cost-effective drive. The performance of the sensorless SRM drive is fully investigated. The simulation and experiments on a 750-W three-phase 12/8-pole SRM are carried out to verify the effectiveness of the proposed scheme.
Resumo:
Environmental consequences of international trade are quite relevant for climate change policy. Apparent decoupling of GHG emission and GDP growth, observed in several European countries, is partly due to the increasing dislocation of manufacturing industries from the developed world to emerging economies. Consequently, decoupling is coupled with increasing GHG emission embodied in imported products from these nations. The article scrutinises the GHG emission embedded in Hungarian import of Chinese products. It argues that a stagnating GHG emission observed in Hungary is intertwined with hidden GHG export to China that takes place through trading of goods. Objective evaluation of compliance status with Kyoto targets would require a consumption-based accounting of GHG emissions rather than a production-based one, unless we accept facing a BIG problem at global level.
Resumo:
A variety of mineral deposits occur in the Paleozoic sedimentary rocks and Late Cretaceous granitic rocks of central Idaho. The main objective of this project is to identify the sources of metals and sulfur in central Idaho ores. Lead isotope compositions of various crustal rocks were determined and compared with the ore lead composition in order to trace sources of lead, and by inference other metals. Sulfur isotope compositions of various sulfide minerals were also determined to trace the sources of sulfur and to explore the coupling or decoupling of metal and sulfur sources. ^ On the basis of lead and sulfur isotope compositions, two groups of ores are recognized: a sedimentary group and an igneous group. The sedimentary group ores are characterized by radiogenic lead and heavy sulfur typical of upper crustal rocks. The sedimentary group ores were formed by meteoric water-dominated hydrothermal systems that leached metals and sulfur from host Paleozoic sedimentary rocks and the underlying Precambrian crystalline basement rocks. The igneous group ores can be divided into two types, the Carrietown-type, and the non Carrietown-type. The Carrietown-type ores are isotopically different from their host granites and are characterized by low uranogenic lead isotope ratios (206Pb/204Pb and 207Pb/ 204Pb) and variable thorogenic lead isotope ratios (208Pb/ 204Pb) typical of lower crustal rocks. The non Carrietown-type ores are similar to host granites and are more radiogenic in their uranogenic lead isotope ratios when compared to the Carrietown-type ores. The differences in the lead isotope compositions of the igneous group ores are attributed to two different phases of magmatic activity. The magmatic phase exposed on the surface involved melting of shallow crustal Precambrian crystalline rocks as well as mid/lower crustal rocks while the underlying phase was derived by melting of mid/lower crustal rocks only. Igneous group ores have both light and heavy sulfur associated with them and it is a function of interaction of hydrothermal fluids with Paleozoic sedimentary rocks. ^ Paleozoic sedimentary rocks and Precambrian basement rocks are the sources of radiogenic lead, and the granites are the sources of light sulfur. Heavy sulfur comes almost entirely from Paleozoic sedimentary rocks. ^
Resumo:
Flocculent materials (floc), in aquatic systems usually consist of a non-consolidated layer of biogenic, detrital material relatively rich in organic matter which represents an important food-web component for invertebrates and fish. Thus, variations in its composition could impact food webs and change faunal structure. Transport, remineralization rates and deposition of floc may also be important factors in soil/sediment formation. In spite of its relevance and sensitivity to external factors, few chemical studies have been carried out on the biogeochemistry of floc material. In this study, we focused on the molecular characterization of the flocculent organic matter (OM), the assessment of its origin and its environmental fate at five stations along a freshwater to marine ecotone, namely the Taylor Slough, Everglades National Park (ENP), Florida. To tackle this issue, suspended, unconsolidated, detrital floc samples, soils/sediments and plants were analyzed for bulk properties, biomarkers and pigments. Both geochemical proxies and biomass-specific biomarkers were used to assess OM sources and transformations. Our results show that the detrital organic matter of the flocculent material is largely regulated by local vegetation inputs, ranging from periphyton, emergent and submerged plants and terrestrial plants such as mangroves, with molecular evidence of different degrees of diagenetic reworking, including fungal activity. Evidence is presented for both hydrodynamic transport of floc materials, and incorporation of floc OM into soils/sediments. However, some molecular parameters showed a decoupling between floc and underlying soil/sediment OM, suggesting that physical transport, incorporation and degradation/remineralization of OM in floc may be controlled by a combination of a variety of complex biogeochemical variables including hydrodynamic transport, hydroperiod characteristics, primary productivity, nutrient availability, and OM quality among others. Further investigations are needed to better understand the ecological role of floc in freshwater and coastal wetlands.
Resumo:
Understanding the preservation and deposition history of organic molecules is crucial for the understanding of paleoenvironmental information contained in their abundance ratios such as Uk'37 and TEX86 used as proxies for sea surface temperature (SST). Based on their relatively high refractivity, alkenones and glycerol dialkyl glycerol tetraethers (GDGTs) can survive postdepositional processes like lateral transport, potentially causing inferred SSTs to be misleading. Likewise, selective preservation of alkenones and GDGTs may cause biases of the SST proxies themselves and can lead to decoupling of both proxy records. Here we report compound-specific radiocarbon data of marine biomarkers including alkenones, GDGTs, and low molecular weight (LMW) n-fatty acids from Black Sea sediments deposited under different redox regimes to evaluate the potentially differential preservation of both biomarker classes and its effect on the SST indices Uk'37 and TEX86 . The decadal D14C values of alkenones, GDGTs, and LMW n-fatty acids indicate similar preservation under oxic, suboxic, and anoxic redox regimes and no contribution of pre-aged compounds, e.g., by lateral supply. Moreover, similar 14C concentrations of crenarchaeol, alkenones, and LMW n-fatty acids imply that the thaumarchaeotal GDGTs preserved in these sediments are produced in the euphotic zone rather than in subsurface/thermocline waters. However, we observe biomarker-based SSTs that strongly deviate (deltaSST up to 8.4 °C) from in situ measured mean annual SSTs in the Black Sea. This is not due to redox-dependent differential biomarker preservation as implied by their D14C values and spatial SST pattern. Since contributions from different sources can largely be excluded, the deviation of the Uk'37 and TEX86 proxy-derived SSTs from in situ SSTs requires further study of phylogenetic and other yet unknown environmental controls on alkenone and GDGT lipid distributions in the Black Sea.
Resumo:
Cooperative communication has gained much interest due to its ability to exploit the broadcasting nature of the wireless medium to mitigate multipath fading. There has been considerable amount of research on how cooperative transmission can improve the performance of the network by focusing on the physical layer issues. During the past few years, the researchers have started to take into consideration cooperative transmission in routing and there has been a growing interest in designing and evaluating cooperative routing protocols. Most of the existing cooperative routing algorithms are designed to reduce the energy consumption; however, packet collision minimization using cooperative routing has not been addressed yet. This dissertation presents an optimization framework to minimize collision probability using cooperative routing in wireless sensor networks. More specifically, we develop a mathematical model and formulate the problem as a large-scale Mixed Integer Non-Linear Programming problem. We also propose a solution based on the branch and bound algorithm augmented with reducing the search space (branch and bound space reduction). The proposed strategy builds up the optimal routes from each source to the sink node by providing the best set of hops in each route, the best set of relays, and the optimal power allocation for the cooperative transmission links. To reduce the computational complexity, we propose two near optimal cooperative routing algorithms. In the first near optimal algorithm, we solve the problem by decoupling the optimal power allocation scheme from optimal route selection. Therefore, the problem is formulated by an Integer Non-Linear Programming, which is solved using a branch and bound space reduced method. In the second near optimal algorithm, the cooperative routing problem is solved by decoupling the transmission power and the relay node se- lection from the route selection. After solving the routing problems, the power allocation is applied in the selected route. Simulation results show the algorithms can significantly reduce the collision probability compared with existing cooperative routing schemes.