800 resultados para Dates de conservation
Resumo:
1. The freshwater pearl mussel Margaritifera margaritifera L. is globally endangered and is threatened by commercial exploitation, pollution and habitat loss throughout its range. Captive breeding would be a valuable tool in enhancing the status of M. margaritifera in the UK. 2. We have developed a semi-natural system for successfully infecting juvenile brown trout with glochidial M. margaritifera, and culturing juvenile mussels in experimental tanks where glochidial M. margaritifera can excyst from fish gills and settle into sediment. 3. Infected fish had less than 1% mortality. Levels of infection varied among fish. Two yearly cohorts of juvenile M. margaritifera were identified from samples of sediment taken from each experimental tank. Individuals range in size from 1.4 mm (2000 cohort) to >3 mm in length (1999 cohort). 4. The number of juvenile M. margaritifera present in the two experimental tanks are estimated to be between 3600 (tank A) and 0 (tank B) for the putative 1999 cohort and between 6000 (tank A) and 13 000 (tank B) for the putative 2000 cohort. 5. This pioneering method for large-scale cultivation of juvenile M. margaritifera is intermediate between the release of infected fish into rivers and the intensive cultivation systems developed in continental Europe and the USA for other species of unionid. This is the first time that large numbers of M. margaritifera have been cultured and represents a significant breakthrough in the conservation of this globally endangered Red Data List species. The method is straightforward and is most cost-effective when undertaken alongside established hatchery processes.
Resumo:
The key enzyme in coronavirus replicase polyprotein processing is the coronavirus main protease, 3CL(pro). The substrate specificities of five coronavirus main proteases, including the prototypic enzymes from the coronavirus groups I, II and III, were characterized. Recombinant main proteases of human coronavirus (HCoV), transmissible gastroenteritis virus (TGEV), feline infectious peritonitis virus, avian infectious bronchitis virus and mouse hepatitis virus (MHV) were tested in peptide-based trans-cleavage assays. The determination of relative rate constants for a set of corresponding HCoV, TGEV and MHV 3CL(pro) cleavage sites revealed a conserved ranking of these sites. Furthermore, a synthetic peptide representing the N-terminal HCoV 3CL(pro) cleavage site was shown to be effectively hydrolysed by noncognate main proteases. The data show that the differential cleavage kinetics of sites within pp1a/pp1ab are a conserved feature of coronavirus main proteases and lead us to predict similar processing kinetics for the replicase polyproteins of all coronaviruses.
Resumo:
This paper evaluates how long-term records could and should be utilized in conservation policy and practice. Traditionally, there has been an extremely limited use of long-term ecological records (greater than 50 years) in biodiversity conservation. There are a number of reasons why such records tend to be discounted, including a perception of poor scale of resolution in both time and space, and the lack of accessibility of long temporal records to non-specialists. Probably more important, however, is the perception that even if suitable temporal records are available, their roles are purely descriptive, simply demonstrating what has occurred before in Earth’s history, and are of little use in the actual practice of conservation. This paper asks why this is the case and whether there is a place for the temporal record in conservation management. Key conservation initiatives related to extinctions, identification of regions of greatest diversity/threat, climate change and biological invasions are addressed. Examples of how a temporal record can add information that is of direct practicable applicability to these issues are highlighted. These include (i) the identification of species at the end of their evolutionary lifespan and therefore most at risk from extinction, (ii) the setting of realistic goals and targets for conservation ‘hotspots’, and (iii) the identification of various management tools for the maintenance/restoration of a desired biological state. For climate change conservation strategies, the use of long-term ecological records in testing the predictive power of species envelope models is highlighted, along with the potential of fossil records to examine the impact of sea-level rise. It is also argued that a long-term perspective is essential for the management of biological invasions, not least in determining when an invasive is not an invasive. The paper concludes that often inclusion of a long-term ecological perspective can provide a more scientifically defensible basis for conservation decisions than the one based only on contemporary records. The pivotal issue of this paper is not whether long-term records are of interest to conservation biologists, but how they can actually be utilized in conservation practice and policy.
Resumo:
We review the uses of fossil insects, particularly Coleoptera (beetles) and Chironomidae (non-biting midges) from ancient deposits to inform the study of wetland ecosystems and their ecological and restoration processes. In particular, we focus on two contrasting ecosystems, drawing upon research undertaken by us on British raised mire peats and shallow lake systems, one an essentially terrestrial ecosystem, the other aquatic, but in which wetland insects play an important and integral part. The study of raised mire peats suggests that faunal stability is a characteristic of these wetland systems, over what appear to be extensive periods of time (up to several millennia), whilst studies of shallow lake ecosystems over recent timescales indicates that faunal instability appears to be more common, usually driven by increasing eutrophication. Drawing upon a series of fossil Coleoptera records spanning several thousand years from Hatfield Moors, south Yorkshire, we reconstruct in some detail the mire’s ontogeny and fluctuations in site hydrology and vegetation cover, illustrating the intimate association between substrate, topography and peat development. A comparison between fossil and modern beetle populations indicates that the faunal characteristics of this mire and its adjacent neighbour, Thorne Moors, become established during the early phases of peat development, including its rare endemics, and that the faunal biodiversity on the sites today is dictated by complex site histories. The over-riding characteristic of these faunas is of stability over several thousand years, which has important implications for the restoration of degraded sites, especially those where refugial areas are limited. In contrast, analyses of fossil Chironomidae from shallow lakes allow researchers to track changes in limnological status and while attempts have been made to reconstruct changes in nutrient levels quantitatively, the chironomids respond indirectly to such changes, typically mediated through complex ecosystem dynamics such as changes in fish and/or macrophyte communities. These changes are illustrated via historic chironomid stratigraphies and diversity indices from a range of shallow lakes located across Britain: Slapton Ley, Frensham Great Pond, Fleet Pond, Kyre Pool and Barnes Loch. These sites have shown varying degrees of eutrophication over recent timescales which tends to be associated with a decline in chironomid diversity. While complex functional processes exist within these ecosystems, our evidence suggests that one of the key drivers in the loss of shallow lake chironomid diversity appears to be the loss of aquatic macrophytes. Overall, while chironomids do show a clear response to altered nutrient regimes, multi-proxy reconstructions are recommended for a clear interpretation of past change. We conclude that if we are to have a better understanding of biota at the ecosystem level we need to know more of the complex interactions between different insect groups as well as with other animal and plant communities. A palaeoecological approach is thus crucial in order to assess the role of insect groups in ecosystem processes, both in the recent past and over long time scales, and is essential for wetland managers and conservation organisations involved in long term management and restoration of wetland systems.
Resumo:
The European Natura 2000 project attempts to balance conservation and exploitation by permitting activities that do not affect the conservation status of designated sites. Given the scale of Natura 2000, guidelines are needed to facilitate the drafting of simple site management plans. This need is particularly acute for traditional harvesting methods for which there is usually strong local opposition to the imposition of controls. These issues were examined in Strangford Lough, a special area of conservation where cockles have traditionally been harvested by hand-raking. Raking was found not to affect the ability of cockles to rebury. There were significant reductions in Zostera biomass when raking was carried out within eelgrass beds (a 90% reduction in biomass available to winter migrant birds from summer raking). Traditional harvesting methods could therefore be accepted in Strangford as long as Zostera beds are avoided. A relatively low intensity of harvesting activity in Strangford Lough probably reflects low cockle densities (average 91.8 m(-2)), with the most economically valuable individuals at some distance from points of access to the shore. An economically feasible management plan could sanction traditional harvesting and result in the implementation of more resource-intensive management only if increases in cockle stocks and market prices stimulate large increases in harvesting activity.
Resumo:
Knowledge of the levels of genetic diversity maintained in natural populations can play a central role in conservation programmes, particularly in threatened habitats or species. Fluctuations in population size can lead to loss of variation and, consequently, increase the risk of extinction. We have examined whether such a genetic bottleneck has occurred in populations of two species in the seagrass genus Zostera, which are believed to have been affected by an outbreak of wasting disease at the start of the last century. A test for heterozygote excess at five nuclear microsatellite loci did not suggest the occurrence of a genetic bottleneck, but analysis of seven chloroplast microsatellite loci and sequence data from two regions did suggest a bottleneck in the chloroplast genome. Extremely low levels of between-population diversity suggest that all subpopulations can be treated as a single management unit for each species. Comparable levels of nuclear genetic diversity were found in the three populations of the primarily sexual Zostera marina var. angustifolia studied but a wider range of within-population diversity was found in Zostera noltii, which displays both. sexual and vegetative reproductive strategies. This may be due to an increase in sexual recruitment due to localised fresh water inflow into the study site near to the most diverse population. Such populations should be prioritised as source material for any replanting or remediation due to natural or anthropogenic loss of Zostera beds in the area.