892 resultados para Database, Image Retrieval, Browsing, Semantic Concept


Relevância:

30.00% 30.00%

Publicador:

Resumo:

The idea of a conservation easement – restrictions on the development and use of land designed to protect the land’s conservation or historic values – can be relatively easily understood. More significant and more challenging is the complex body of state and federal laws that shapes the creation, funding, tax treatment, enforcement, modification, and termination of conservation easements. The explosion in the number of conservation easements over the past four decades has made them one of the most popular land protection mechanisms in the United States. The National Conservation Easement Database estimates that the total number of acres encumbered by conservation easements exceeds 40 million.Because conservation easements are both novel and ubiquitous, understanding how they actual work is essential for practicing lawyers, policymakers, land trust professionals, and students of conservation. This article provides a “quick tour” through some of the most important aspects of the developing mosaic of conservation easement law. It gives the reader a sense of the complex inter-jurisdictional dynamics that shape conservation transactions and disputes about conservation easements. Professors of property law, environmental law, tax law, and environmental studies who wish to cover conservation easements in the context of a more general course can use the article to provide their students with a broad but comprehensive overview of the relevant legal and policy issues.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In the last few years, there has been a wide development in the research on textual information systems. The goal is to improve these systems in order to allow an easy localization, treatment and access to the information stored in digital format (Digital Databases, Documental Databases, and so on). There are lots of applications focused on information access (for example, Web-search systems like Google or Altavista). However, these applications have problems when they must access to cross-language information, or when they need to show information in a language different from the one of the query. This paper explores the use of syntactic-sematic patterns as a method to access to multilingual information, and revise, in the case of Information Retrieval, where it is possible and useful to employ patterns when it comes to the multilingual and interactive aspects. On the one hand, the multilingual aspects that are going to be studied are the ones related to the access to documents in different languages from the one of the query, as well as the automatic translation of the document, i.e. a machine translation system based on patterns. On the other hand, this paper is going to go deep into the interactive aspects related to the reformulation of a query based on the syntactic-semantic pattern of the request.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Este trabajo presenta el uso de una ontología en el dominio financiero para la expansión de consultas con el fin de mejorar los resultados de un sistema de recuperación de información (RI) financiera. Este sistema está compuesto por una ontología y un índice de Lucene que permite recuperación de conceptos identificados mediante procesamiento de lenguaje natural. Se ha llevado a cabo una evaluación con un conjunto limitado de consultas y los resultados indican que la ambigüedad sigue siendo un problema al expandir la consulta. En ocasiones, la elección de las entidades adecuadas a la hora de expandir las consultas (filtrando por sector, empresa, etc.) permite resolver esa ambigüedad.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A parallel algorithm for image noise removal is proposed. The algorithm is based on peer group concept and uses a fuzzy metric. An optimization study on the use of the CUDA platform to remove impulsive noise using this algorithm is presented. Moreover, an implementation of the algorithm on multi-core platforms using OpenMP is presented. Performance is evaluated in terms of execution time and a comparison of the implementation parallelised in multi-core, GPUs and the combination of both is conducted. A performance analysis with large images is conducted in order to identify the amount of pixels to allocate in the CPU and GPU. The observed time shows that both devices must have work to do, leaving the most to the GPU. Results show that parallel implementations of denoising filters on GPUs and multi-cores are very advisable, and they open the door to use such algorithms for real-time processing.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A parallel algorithm to remove impulsive noise in digital images using heterogeneous CPU/GPU computing is proposed. The parallel denoising algorithm is based on the peer group concept and uses an Euclidean metric. In order to identify the amount of pixels to be allocated in multi-core and GPUs, a performance analysis using large images is presented. A comparison of the parallel implementation in multi-core, GPUs and a combination of both is performed. Performance has been evaluated in terms of execution time and Megapixels/second. We present several optimization strategies especially effective for the multi-core environment, and demonstrate significant performance improvements. The main advantage of the proposed noise removal methodology is its computational speed, which enables efficient filtering of color images in real-time applications.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In this paper we present a novel image processing algorithm providing good preliminary capabilities for in vitro detection of malaria. The proposed concept is based upon analysis of the temporal variation of each pixel. Changes in dark pixels mean that inter cellular activity happened, indicating the presence of the malaria parasite inside the cell. Preliminary experimental results involving analysis of red blood cells being either healthy or infected with malaria parasites, validated the potential benefit of the proposed numerical approach.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Human behaviour recognition has been, and still remains, a challenging problem that involves different areas of computational intelligence. The automated understanding of people activities from video sequences is an open research topic in which the computer vision and pattern recognition areas have made big efforts. In this paper, the problem is studied from a prediction point of view. We propose a novel method able to early detect behaviour using a small portion of the input, in addition to the capabilities of it to predict behaviour from new inputs. Specifically, we propose a predictive method based on a simple representation of trajectories of a person in the scene which allows a high level understanding of the global human behaviour. The representation of the trajectory is used as a descriptor of the activity of the individual. The descriptors are used as a cue of a classification stage for pattern recognition purposes. Classifiers are trained using the trajectory representation of the complete sequence. However, partial sequences are processed to evaluate the early prediction capabilities having a specific observation time of the scene. The experiments have been carried out using the three different dataset of the CAVIAR database taken into account the behaviour of an individual. Additionally, different classic classifiers have been used for experimentation in order to evaluate the robustness of the proposal. Results confirm the high accuracy of the proposal on the early recognition of people behaviours.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

La recherche d'informations s'intéresse, entre autres, à répondre à des questions comme: est-ce qu'un document est pertinent à une requête ? Est-ce que deux requêtes ou deux documents sont similaires ? Comment la similarité entre deux requêtes ou documents peut être utilisée pour améliorer l'estimation de la pertinence ? Pour donner réponse à ces questions, il est nécessaire d'associer chaque document et requête à des représentations interprétables par ordinateur. Une fois ces représentations estimées, la similarité peut correspondre, par exemple, à une distance ou une divergence qui opère dans l'espace de représentation. On admet généralement que la qualité d'une représentation a un impact direct sur l'erreur d'estimation par rapport à la vraie pertinence, jugée par un humain. Estimer de bonnes représentations des documents et des requêtes a longtemps été un problème central de la recherche d'informations. Le but de cette thèse est de proposer des nouvelles méthodes pour estimer les représentations des documents et des requêtes, la relation de pertinence entre eux et ainsi modestement avancer l'état de l'art du domaine. Nous présentons quatre articles publiés dans des conférences internationales et un article publié dans un forum d'évaluation. Les deux premiers articles concernent des méthodes qui créent l'espace de représentation selon une connaissance à priori sur les caractéristiques qui sont importantes pour la tâche à accomplir. Ceux-ci nous amènent à présenter un nouveau modèle de recherche d'informations qui diffère des modèles existants sur le plan théorique et de l'efficacité expérimentale. Les deux derniers articles marquent un changement fondamental dans l'approche de construction des représentations. Ils bénéficient notamment de l'intérêt de recherche dont les techniques d'apprentissage profond par réseaux de neurones, ou deep learning, ont fait récemment l'objet. Ces modèles d'apprentissage élicitent automatiquement les caractéristiques importantes pour la tâche demandée à partir d'une quantité importante de données. Nous nous intéressons à la modélisation des relations sémantiques entre documents et requêtes ainsi qu'entre deux ou plusieurs requêtes. Ces derniers articles marquent les premières applications de l'apprentissage de représentations par réseaux de neurones à la recherche d'informations. Les modèles proposés ont aussi produit une performance améliorée sur des collections de test standard. Nos travaux nous mènent à la conclusion générale suivante: la performance en recherche d'informations pourrait drastiquement être améliorée en se basant sur les approches d'apprentissage de représentations.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Background Image-guided systems have recently been introduced for their application in liver surgery.We aimed to identify and propose suitable indications for image-guided navigation systems in the domain of open oncologic liver surgery and,more specifically, in the setting of liver resection with and without microwave ablation. Method Retrospective analysis was conducted in patients undergoing liver resection with and without microwave ablation using an intraoperative image-guided stereotactic system during three stages of technological development (accuracy: 8.4 ± 4.4 mm in phase I and 8.4 ± 6.5 mm in phase II versus 4.5 ± 3.6 mm in phase III). It was evaluated, in which indications image-guided surgery was used according to the different stages of technical development. Results Between 2009 and 2013, 65 patients underwent image-guided surgical treatment, resection alone (n=38), ablation alone (n =11), or a combination thereof (n =16). With increasing accuracy of the system, image guidance was progressively used for atypical resections and combined microwave ablation and resection instead of formal liver resection (p<0.0001). Conclusion Clinical application of image guidance is feasible, while its efficacy is subject to accuracy. The concept of image guidance has been shown to be increasingly efficient for selected indications in liver surgery. While accuracy of available technology is increasing pertaining to technological advancements, more and more previously untreatable scenarios such as multiple small, bilobar lesions and so-called vanishing lesions come within reach.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

La recherche d'informations s'intéresse, entre autres, à répondre à des questions comme: est-ce qu'un document est pertinent à une requête ? Est-ce que deux requêtes ou deux documents sont similaires ? Comment la similarité entre deux requêtes ou documents peut être utilisée pour améliorer l'estimation de la pertinence ? Pour donner réponse à ces questions, il est nécessaire d'associer chaque document et requête à des représentations interprétables par ordinateur. Une fois ces représentations estimées, la similarité peut correspondre, par exemple, à une distance ou une divergence qui opère dans l'espace de représentation. On admet généralement que la qualité d'une représentation a un impact direct sur l'erreur d'estimation par rapport à la vraie pertinence, jugée par un humain. Estimer de bonnes représentations des documents et des requêtes a longtemps été un problème central de la recherche d'informations. Le but de cette thèse est de proposer des nouvelles méthodes pour estimer les représentations des documents et des requêtes, la relation de pertinence entre eux et ainsi modestement avancer l'état de l'art du domaine. Nous présentons quatre articles publiés dans des conférences internationales et un article publié dans un forum d'évaluation. Les deux premiers articles concernent des méthodes qui créent l'espace de représentation selon une connaissance à priori sur les caractéristiques qui sont importantes pour la tâche à accomplir. Ceux-ci nous amènent à présenter un nouveau modèle de recherche d'informations qui diffère des modèles existants sur le plan théorique et de l'efficacité expérimentale. Les deux derniers articles marquent un changement fondamental dans l'approche de construction des représentations. Ils bénéficient notamment de l'intérêt de recherche dont les techniques d'apprentissage profond par réseaux de neurones, ou deep learning, ont fait récemment l'objet. Ces modèles d'apprentissage élicitent automatiquement les caractéristiques importantes pour la tâche demandée à partir d'une quantité importante de données. Nous nous intéressons à la modélisation des relations sémantiques entre documents et requêtes ainsi qu'entre deux ou plusieurs requêtes. Ces derniers articles marquent les premières applications de l'apprentissage de représentations par réseaux de neurones à la recherche d'informations. Les modèles proposés ont aussi produit une performance améliorée sur des collections de test standard. Nos travaux nous mènent à la conclusion générale suivante: la performance en recherche d'informations pourrait drastiquement être améliorée en se basant sur les approches d'apprentissage de représentations.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The study of the Neogene (Miocene to Holocene) stratigraphic record on the glaciated Atlantic margin of NW Europe has, to date, largely been undertaken on an ad-hoc basis. Whereas a systematic approach to understanding the stratigraphic development of Palaeogene and older strata has been undertaken in areas such as the North Sea, West of Shetland and Norway, the problem of establishing a Neogene framework has been only partly addressed by academia and the oil industry. In most cases where a Neogene stratigraphy has been constructed, this has been largely in response to problem solving and risk assessment in a restricted area. Nevertheless, in the past few years it has become increasingly apparent that there is a common history in the Neogene development of the passive Atlantic margin of NW Europe, between mid-Norway and SW Ireland. The inspection and interpretation of an extensive geophysical and geological database has identified several regionally significant and correlatable unconformities along this continental margin. Thus, a regional approach to the stratigraphical development of the Neogene succession on the glaciated European Atlantic margin is undertaken in this volume.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Especially in functional-typological linguistics, semantic roles have been studied thoroughly, because they constitute a good starting point for any study on argument marking due to their semantically defined nature. However, the very concept of semantic roles is far from being without problems, and there is still no consensus on how the roles are best defined. In this volume, the notion will be discussed from novel perspectives with the aim of providing new insights into our understanding of semantic roles. Two of the papers deal with semantic role clusters, one with semantic roles in verbless constructions, one with diachrony of semantic roles and two with individual semantic roles that have not been studied in too much detail in previous studies. The book may not offer answers to all questions the readers may have, but at least it raises interesting further questions relevant to arriving at a better understanding of semantic roles.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

"PR-830"--P. [4] of cover.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Mode of access: Internet.