811 resultados para Data-driven analysis
Resumo:
Computers employing some degree of data flow organisation are now well established as providing a possible vehicle for concurrent computation. Although data-driven computation frees the architecture from the constraints of the single program counter, processor and global memory, inherent in the classic von Neumann computer, there can still be problems with the unconstrained generation of fresh result tokens if a pure data flow approach is adopted. The advantages of allowing serial processing for those parts of a program which are inherently serial, and of permitting a demand-driven, as well as data-driven, mode of operation are identified and described. The MUSE machine described here is a structured architecture supporting both serial and parallel processing which allows the abstract structure of a program to be mapped onto the machine in a logical way.
Resumo:
Mestrado em Controlo de Gestão e dos Negócios
Resumo:
Collecting and analyzing consumer data is essential in today’s data-driven business environment. However, consumers are becoming more aware of the value of the information they can provide to companies, thereby being more reluctant to share it for free. Therefore, companies need to find ways to motivate consumers to disclose personal information. The main research question of the study was formed as “How can companies motivate consumers to disclose personal information?” and it was further divided into two subquestions: 1) What types of benefits motivate consumers to disclose personal information? 2) How does the disclosure context affect the consumers’ information disclosure behavior? The conceptual framework consisted of a classification of extrinsic and intrinsic benefits, and moderating factors, which were recognized on the basis of prior research in the field. The study was conducted by using qualitative research methods. The primary data was collected by interviewing ten representatives from eight companies. The data was analyzed and reported according to predetermined themes. The findings of the study confirm that consumers can be motivated to disclose personal information by offering different types of extrinsic (monetary saving, time saving, self-enhancement, and social adjustment) and intrinsic (novelty, pleasure, and altruism) benefits. However, not all the benefits are equally useful ways to convince the customer to disclose information. Moreover, different factors in the disclosure context can either alleviate or increase the effectiveness of the benefits and the consumers’ motivation to disclose personal information. Such factors include the consumer’s privacy concerns, perceived trust towards the company, the relevancy of the requested information, personalization, website elements (especially security, usability, and aesthetics of a website), and the consumer’s shopping motivation. This study has several contributions. It is essential that companies recognize the most attractive benefits regarding their business and their customers, and that they understand how the disclosure context affects the consumer’s information disclosure behavior. The likelihood of information disclosure can be increased, for example, by offering benefits that meet the consumers’ needs and preferences, improving the relevancy of the asked information, stating the reasons for data collection, creating and maintaining a trustworthy image of the company, and enhancing the quality of the company’s website.
Resumo:
This thesis investigates how web search evaluation can be improved using historical interaction data. Modern search engines combine offline and online evaluation approaches in a sequence of steps that a tested change needs to pass through to be accepted as an improvement and subsequently deployed. We refer to such a sequence of steps as an evaluation pipeline. In this thesis, we consider the evaluation pipeline to contain three sequential steps: an offline evaluation step, an online evaluation scheduling step, and an online evaluation step. In this thesis we show that historical user interaction data can aid in improving the accuracy or efficiency of each of the steps of the web search evaluation pipeline. As a result of these improvements, the overall efficiency of the entire evaluation pipeline is increased. Firstly, we investigate how user interaction data can be used to build accurate offline evaluation methods for query auto-completion mechanisms. We propose a family of offline evaluation metrics for query auto-completion that represents the effort the user has to spend in order to submit their query. The parameters of our proposed metrics are trained against a set of user interactions recorded in the search engine’s query logs. From our experimental study, we observe that our proposed metrics are significantly more correlated with an online user satisfaction indicator than the metrics proposed in the existing literature. Hence, fewer changes will pass the offline evaluation step to be rejected after the online evaluation step. As a result, this would allow us to achieve a higher efficiency of the entire evaluation pipeline. Secondly, we state the problem of the optimised scheduling of online experiments. We tackle this problem by considering a greedy scheduler that prioritises the evaluation queue according to the predicted likelihood of success of a particular experiment. This predictor is trained on a set of online experiments, and uses a diverse set of features to represent an online experiment. Our study demonstrates that a higher number of successful experiments per unit of time can be achieved by deploying such a scheduler on the second step of the evaluation pipeline. Consequently, we argue that the efficiency of the evaluation pipeline can be increased. Next, to improve the efficiency of the online evaluation step, we propose the Generalised Team Draft interleaving framework. Generalised Team Draft considers both the interleaving policy (how often a particular combination of results is shown) and click scoring (how important each click is) as parameters in a data-driven optimisation of the interleaving sensitivity. Further, Generalised Team Draft is applicable beyond domains with a list-based representation of results, i.e. in domains with a grid-based representation, such as image search. Our study using datasets of interleaving experiments performed both in document and image search domains demonstrates that Generalised Team Draft achieves the highest sensitivity. A higher sensitivity indicates that the interleaving experiments can be deployed for a shorter period of time or use a smaller sample of users. Importantly, Generalised Team Draft optimises the interleaving parameters w.r.t. historical interaction data recorded in the interleaving experiments. Finally, we propose to apply the sequential testing methods to reduce the mean deployment time for the interleaving experiments. We adapt two sequential tests for the interleaving experimentation. We demonstrate that one can achieve a significant decrease in experiment duration by using such sequential testing methods. The highest efficiency is achieved by the sequential tests that adjust their stopping thresholds using historical interaction data recorded in diagnostic experiments. Our further experimental study demonstrates that cumulative gains in the online experimentation efficiency can be achieved by combining the interleaving sensitivity optimisation approaches, including Generalised Team Draft, and the sequential testing approaches. Overall, the central contributions of this thesis are the proposed approaches to improve the accuracy or efficiency of the steps of the evaluation pipeline: the offline evaluation frameworks for the query auto-completion, an approach for the optimised scheduling of online experiments, a general framework for the efficient online interleaving evaluation, and a sequential testing approach for the online search evaluation. The experiments in this thesis are based on massive real-life datasets obtained from Yandex, a leading commercial search engine. These experiments demonstrate the potential of the proposed approaches to improve the efficiency of the evaluation pipeline.
Resumo:
Sequences of timestamped events are currently being generated across nearly every domain of data analytics, from e-commerce web logging to electronic health records used by doctors and medical researchers. Every day, this data type is reviewed by humans who apply statistical tests, hoping to learn everything they can about how these processes work, why they break, and how they can be improved upon. To further uncover how these processes work the way they do, researchers often compare two groups, or cohorts, of event sequences to find the differences and similarities between outcomes and processes. With temporal event sequence data, this task is complex because of the variety of ways single events and sequences of events can differ between the two cohorts of records: the structure of the event sequences (e.g., event order, co-occurring events, or frequencies of events), the attributes about the events and records (e.g., gender of a patient), or metrics about the timestamps themselves (e.g., duration of an event). Running statistical tests to cover all these cases and determining which results are significant becomes cumbersome. Current visual analytics tools for comparing groups of event sequences emphasize a purely statistical or purely visual approach for comparison. Visual analytics tools leverage humans' ability to easily see patterns and anomalies that they were not expecting, but is limited by uncertainty in findings. Statistical tools emphasize finding significant differences in the data, but often requires researchers have a concrete question and doesn't facilitate more general exploration of the data. Combining visual analytics tools with statistical methods leverages the benefits of both approaches for quicker and easier insight discovery. Integrating statistics into a visualization tool presents many challenges on the frontend (e.g., displaying the results of many different metrics concisely) and in the backend (e.g., scalability challenges with running various metrics on multi-dimensional data at once). I begin by exploring the problem of comparing cohorts of event sequences and understanding the questions that analysts commonly ask in this task. From there, I demonstrate that combining automated statistics with an interactive user interface amplifies the benefits of both types of tools, thereby enabling analysts to conduct quicker and easier data exploration, hypothesis generation, and insight discovery. The direct contributions of this dissertation are: (1) a taxonomy of metrics for comparing cohorts of temporal event sequences, (2) a statistical framework for exploratory data analysis with a method I refer to as high-volume hypothesis testing (HVHT), (3) a family of visualizations and guidelines for interaction techniques that are useful for understanding and parsing the results, and (4) a user study, five long-term case studies, and five short-term case studies which demonstrate the utility and impact of these methods in various domains: four in the medical domain, one in web log analysis, two in education, and one each in social networks, sports analytics, and security. My dissertation contributes an understanding of how cohorts of temporal event sequences are commonly compared and the difficulties associated with applying and parsing the results of these metrics. It also contributes a set of visualizations, algorithms, and design guidelines for balancing automated statistics with user-driven analysis to guide users to significant, distinguishing features between cohorts. This work opens avenues for future research in comparing two or more groups of temporal event sequences, opening traditional machine learning and data mining techniques to user interaction, and extending the principles found in this dissertation to data types beyond temporal event sequences.
Resumo:
This paper presents the results of a research that aimed at identifying optimal performance standards of Brazilian public and philanthropic hospitals. In order to carry out the analysis, a model based on Data Envelopment Analysis (DEA) was developed. We collected financial data from hospitals’ financial statements available on the internet, as well as operational data from the Information Technology Department of the Brazilian Public Health Care System – SUS (DATASUS). Data from 18 hospitals from 2007 to 2011 were analyzed. Our DEA model used both operational and financial indicators (variables). In order to develop this model, two indicators were considered inputs: Values (in Brazilian Reais) of Fixed Assets and Planned Capacity. On the other hand, the following indicators were considered outputs: Net Margin, Return on Assets and Institutional Mortality Rate. As regards the proposed model, there were five hospitals with optimal performance and four hospitals were considered inefficient, upon the analysis of the variables, considering the analyzed period. Analysis of the weights indicated the most relevant variables for determining efficiency and scale variable values, which is an important tool to aid the decision-making by hospital managers. Finally, the scale variables determined the returns on production, indicating that 14 hospitals work with scale diseconomies. This may indicate inefficiency in the resource management of the Brazilian public health-care system, by analyzing this set of proposed variables.
Resumo:
The Exhibitium Project , awarded by the BBVA Foundation, is a data-driven project developed by an international consortium of research groups . One of its main objectives is to build a prototype that will serve as a base to produce a platform for the recording and exploitation of data about art-exhibitions available on the Internet . Therefore, our proposal aims to expose the methods, procedures and decision-making processes that have governed the technological implementation of this prototype, especially with regard to the reuse of WordPress (WP) as development framework.
Resumo:
Experiments were conducted at the GALCIT supersonic shear-layer facility to investigate aspects of reacting transverse jets in supersonic crossflow using chemiluminescence and schlieren image-correlation velocimetry. In particular, experiments were designed to examine mixing-delay length dependencies on jet-fluid molar mass, jet diameter, and jet inclination.
The experimental results show that mixing-delay length depends on jet Reynolds number, when appropriately normalized, up to a jet Reynolds number of 500,000. Jet inclination increases the mixing-delay length, but causes less disturbance to the crossflow when compared to normal jet injection. This can be explained, in part, in terms of a control-volume analysis that relates jet inclination to flow conditions downstream of injection.
In the second part of this thesis, a combustion-modeling framework is proposed and developed that is tailored to large-eddy simulations of turbulent combustion in high-speed flows. Scaling arguments place supersonic hydrocarbon combustion in a regime of autoignition-dominated distributed reaction zones (DRZ). The proposed evolution-variable manifold (EVM) framework incorporates an ignition-delay data-driven induction model with a post-ignition manifold that uses a Lagrangian convected 'balloon' reactor model for chemistry tabulation. A large-eddy simulation incorporating the EVM framework captures several important reacting-flow features of a transverse hydrogen jet in heated-air crossflow experiment.
Resumo:
During the past decade, there has been a dramatic increase by postsecondary institutions in providing academic programs and course offerings in a multitude of formats and venues (Biemiller, 2009; Kucsera & Zimmaro, 2010; Lang, 2009; Mangan, 2008). Strategies pertaining to reapportionment of course-delivery seat time have been a major facet of these institutional initiatives; most notably, within many open-door 2-year colleges. Often, these enrollment-management decisions are driven by the desire to increase market-share, optimize the usage of finite facility capacity, and contain costs, especially during these economically turbulent times. So, while enrollments have surged to the point where nearly one in three 18-to-24 year-old U.S. undergraduates are community college students (Pew Research Center, 2009), graduation rates, on average, still remain distressingly low (Complete College America, 2011). Among the learning-theory constructs related to seat-time reapportionment efforts is the cognitive phenomenon commonly referred to as the spacing effect, the degree to which learning is enhanced by a series of shorter, separated sessions as opposed to fewer, more massed episodes. This ex post facto study explored whether seat time in a postsecondary developmental-level algebra course is significantly related to: course success; course-enrollment persistence; and, longitudinally, the time to successfully complete a general-education-level mathematics course. Hierarchical logistic regression and discrete-time survival analysis were used to perform a multi-level, multivariable analysis of a student cohort (N = 3,284) enrolled at a large, multi-campus, urban community college. The subjects were retrospectively tracked over a 2-year longitudinal period. The study found that students in long seat-time classes tended to withdraw earlier and more often than did their peers in short seat-time classes (p < .05). Additionally, a model comprised of nine statistically significant covariates (all with p-values less than .01) was constructed. However, no longitudinal seat-time group differences were detected nor was there sufficient statistical evidence to conclude that seat time was predictive of developmental-level course success. A principal aim of this study was to demonstrate—to educational leaders, researchers, and institutional-research/business-intelligence professionals—the advantages and computational practicability of survival analysis, an underused but more powerful way to investigate changes in students over time.
Resumo:
Objetivo: Identificar las barreras para la unificación de una Historia Clínica Electrónica –HCE- en Colombia. Materiales y Métodos: Se realizó un estudio cualitativo. Se realizaron entrevistas semiestructuradas a profesionales y expertos de 22 instituciones del sector salud, de Bogotá y de los departamentos de Cundinamarca, Santander, Antioquia, Caldas, Huila, Valle del Cauca. Resultados: Colombia se encuentra en una estructuración para la implementación de la Historia Clínica Electrónica Unificada -HCEU-. Actualmente, se encuentra en unificación en 42 IPSs públicas en el departamento de Cundinamarca, el desarrollo de la HCEU en el país es privado y de desarrollo propio debido a las necesidades particulares de cada IPS. Conclusiones: Se identificaron barreras humanas, financieras, legales, organizacionales, técnicas y profesionales en los departamentos entrevistados. Se identificó que la unificación de la HCE depende del acuerdo de voluntades entre las IPSs del sector público, privado, EPSs, y el Gobierno Nacional.
Resumo:
We propose a method denoted as synthetic portfolio for event studies in market microstructure that is particularly interesting to use with high frequency data and thinly traded markets. The method is based on Synthetic Control Method and provides a robust data driven method to build a counterfactual for evaluating the effects of the volatility call auctions. We find that SMC could be used if the loss function is defined as the difference between the returns of the asset and the returns of a synthetic portfolio. We apply SCM to test the performance of the volatility call auction as a circuit breaker in the context of an event study. We find that for Colombian Stock Market securities, the asynchronicity of intraday data reduces the analysis to a selected group of stocks, however it is possible to build a tracking portfolio. The realized volatility increases after the auction, indicating that the mechanism is not enhancing the price discovery process.
Resumo:
A number of intervention approaches have been developed to improve work-related driving safety. However, past interventions have been limited in that they have been data-driven, and have not been developed within a theoretical framework. The aim of this study is to present a theory-driven intervention. Based on the methodology developed by Ludwig and Geller (1991), this study evaluates the effectiveness of a participative education intervention on a group of work-related drivers (n = 28; experimental group n = 19, control n = 9). The results support the effectiveness of the intervention in reducing speeding over a six month period, while a non significant increase was found in the control group. The results of this study have important implications for organisations developing theory-driven interventions designed to improve work-related driving behaviour.
Resumo:
Engineering assets are often complex systems. In a complex system, components often have failure interactions which lead to interactive failures. A system with interactive failures may lead to an increased failure probability. Hence, one may have to take the interactive failures into account when designing and maintaining complex engineering systems. To address this issue, Sun et al have developed an analytical model for the interactive failures. In this model, the degree of interaction between two components is represented by interactive coefficients. To use this model for failure analysis, the related interactive coefficients must be estimated. However, methods for estimating the interactive coefficients have not been reported. To fill this gap, this paper presents five methods to estimate the interactive coefficients including probabilistic method; failure data based analysis method; laboratory experimental method; failure interaction mechanism based method; and expert estimation method. Examples are given to demonstrate the applications of the proposed methods. Comparisons among these methods are also presented.
Resumo:
This paper investigates the elements which support innovative and entrepreneurial activity in New Zealand’s state owned enterprises (SOEs). An inductive case study design, involving interview data, textual analysis, and observation, was applied to three SOEs. Findings reveal that those aspects typically associated with entrepreneurship, such as innovation, risk acceptance, pro-activeness and growth, are often supported by a number of unexpected elements within the public sector. These elements include culture, branding, operational excellence, cost efficiency, and knowledge transfer. The implications are twofold. First, that innovative and entrepreneurial activity in the public sector can go beyond policy-making, with SOEs representing an important policy decision and sector of the New Zealand Government. And second, that the impact of several SOEs on international markets suggests competition on the global stage will increasingly come from both public and private sector organizations.