975 resultados para DIASTEREOSELECTIVE TOTAL-SYNTHESIS
Resumo:
Nowadays, it is clear that the target of creating a sustainable future for the next generations requires to re-think the industrial application of chemistry. It is also evident that more sustainable chemical processes may be economically convenient, in comparison with the conventional ones, because fewer by-products means lower costs for raw materials, for separation and for disposal treatments; but also it implies an increase of productivity and, as a consequence, smaller reactors can be used. In addition, an indirect gain could derive from the better public image of the company, marketing sustainable products or processes. In this context, oxidation reactions play a major role, being the tool for the production of huge quantities of chemical intermediates and specialties. Potentially, the impact of these productions on the environment could have been much worse than it is, if a continuous efforts hadn’t been spent to improve the technologies employed. Substantial technological innovations have driven the development of new catalytic systems, the improvement of reactions and process technologies, contributing to move the chemical industry in the direction of a more sustainable and ecological approach. The roadmap for the application of these concepts includes new synthetic strategies, alternative reactants, catalysts heterogenisation and innovative reactor configurations and process design. Actually, in order to implement all these ideas into real projects, the development of more efficient reactions is one primary target. Yield, selectivity and space-time yield are the right metrics for evaluating the reaction efficiency. In the case of catalytic selective oxidation, the control of selectivity has always been the principal issue, because the formation of total oxidation products (carbon oxides) is thermodynamically more favoured than the formation of the desired, partially oxidized compound. As a matter of fact, only in few oxidation reactions a total, or close to total, conversion is achieved, and usually the selectivity is limited by the formation of by-products or co-products, that often implies unfavourable process economics; moreover, sometimes the cost of the oxidant further penalizes the process. During my PhD work, I have investigated four reactions that are emblematic of the new approaches used in the chemical industry. In the Part A of my thesis, a new process aimed at a more sustainable production of menadione (vitamin K3) is described. The “greener” approach includes the use of hydrogen peroxide in place of chromate (from a stoichiometric oxidation to a catalytic oxidation), also avoiding the production of dangerous waste. Moreover, I have studied the possibility of using an heterogeneous catalytic system, able to efficiently activate hydrogen peroxide. Indeed, the overall process would be carried out in two different steps: the first is the methylation of 1-naphthol with methanol to yield 2-methyl-1-naphthol, the second one is the oxidation of the latter compound to menadione. The catalyst for this latter step, the reaction object of my investigation, consists of Nb2O5-SiO2 prepared with the sol-gel technique. The catalytic tests were first carried out under conditions that simulate the in-situ generation of hydrogen peroxide, that means using a low concentration of the oxidant. Then, experiments were carried out using higher hydrogen peroxide concentration. The study of the reaction mechanism was fundamental to get indications about the best operative conditions, and improve the selectivity to menadione. In the Part B, I explored the direct oxidation of benzene to phenol with hydrogen peroxide. The industrial process for phenol is the oxidation of cumene with oxygen, that also co-produces acetone. This can be considered a case of how economics could drive the sustainability issue; in fact, the new process allowing to obtain directly phenol, besides avoiding the co-production of acetone (a burden for phenol, because the market requirements for the two products are quite different), might be economically convenient with respect to the conventional process, if a high selectivity to phenol were obtained. Titanium silicalite-1 (TS-1) is the catalyst chosen for this reaction. Comparing the reactivity results obtained with some TS-1 samples having different chemical-physical properties, and analyzing in detail the effect of the more important reaction parameters, we could formulate some hypothesis concerning the reaction network and mechanism. Part C of my thesis deals with the hydroxylation of phenol to hydroquinone and catechol. This reaction is already industrially applied but, for economical reason, an improvement of the selectivity to the para di-hydroxilated compound and a decrease of the selectivity to the ortho isomer would be desirable. Also in this case, the catalyst used was the TS-1. The aim of my research was to find out a method to control the selectivity ratio between the two isomers, and finally to make the industrial process more flexible, in order to adapt the process performance in function of fluctuations of the market requirements. The reaction was carried out in both a batch stirred reactor and in a re-circulating fixed-bed reactor. In the first system, the effect of various reaction parameters on catalytic behaviour was investigated: type of solvent or co-solvent, and particle size. With the second reactor type, I investigated the possibility to use a continuous system, and the catalyst shaped in extrudates (instead of powder), in order to avoid the catalyst filtration step. Finally, part D deals with the study of a new process for the valorisation of glycerol, by means of transformation into valuable chemicals. This molecule is nowadays produced in big amount, being a co-product in biodiesel synthesis; therefore, it is considered a raw material from renewable resources (a bio-platform molecule). Initially, we tested the oxidation of glycerol in the liquid-phase, with hydrogen peroxide and TS-1. However, results achieved were not satisfactory. Then we investigated the gas-phase transformation of glycerol into acrylic acid, with the intermediate formation of acrolein; the latter can be obtained by dehydration of glycerol, and then can be oxidized into acrylic acid. Actually, the oxidation step from acrolein to acrylic acid is already optimized at an industrial level; therefore, we decided to investigate in depth the first step of the process. I studied the reactivity of heterogeneous acid catalysts based on sulphated zirconia. Tests were carried out both in aerobic and anaerobic conditions, in order to investigate the effect of oxygen on the catalyst deactivation rate (one main problem usually met in glycerol dehydration). Finally, I studied the reactivity of bifunctional systems, made of Keggin-type polyoxometalates, either alone or supported over sulphated zirconia, in this way combining the acid functionality (necessary for the dehydrative step) with the redox one (necessary for the oxidative step). In conclusion, during my PhD work I investigated reactions that apply the “green chemistry” rules and strategies; in particular, I studied new greener approaches for the synthesis of chemicals (Part A and Part B), the optimisation of reaction parameters to make the oxidation process more flexible (Part C), and the use of a bioplatform molecule for the synthesis of a chemical intermediate (Part D).
Resumo:
Linear and macrocyclic nitrogen ligands have been found wide application during the years. Nitrogen has a much strong association with transition-metal ions because the electron pair is partucularly available for complexing purposes. We started our investigation with the synthesis of new chiral perazamacrocycles containing four pyrrole rings. This ligand was synthesized by the [2+2]condensation of (R,R)-diaminocyclohexane and dipirranedialdehydes and was tested, after a complexation with Cu(OAc)2, in Henry reactions. The best yields (96%) and higher ee’s (96%) were obtained when the meso-substituent on the dipyrrandialdehyde was a methyl group. The positive influence of the pyrrole-containing macrocyclic structure on the efficiency/enantioselectivity of the catalytic system was demonstrated by comparison with the Henry reactions performed using analogous ligands. Henry product was obtain in good yield but only 73% of ee, when the dialdehyde unit was replaced by a triheteroaromatic dialdehye (furan-pyrrol-furan). Another well known macrocyclic ligand is calix[4]pyrrole. We decided to investigate, in collaboration with Neier’s group, the metal-coordinating properties of calix[2]pyrrole[2]pyrrolidine compounds obtained by the reduction of calix[4]pyrrole. We focused our attention on the reduction conditions, and tested different Pd supported (charcoal, grafite) catalysts at different condition. Concerning the synthesis of linear polyamine ligands. We focused our attention to the synthesis of 2-heteroaryl- and 2,5-diheteroarylpyrrolidines. The reductive amination reaction of diarylketones and aryl-substitutedketo-aldehydes with different chiral amines was exploited to prepare a small library of diastereo-enriched substituted pyrrolidines. We have also described a new synthetic route to 1,2-disubstituted 1,2,3,4-tetrahydropyrrole[1,2-a]pyrazines, which involves the diastereoselective addition of Grignard reagents to chiral oxazolidines. The best diastereoselectivity (98:2) was dependent on the nature of both the chiral auxiliary, (S)-1-phenylglycinol, and the nature of the organometallic reagent (MeMgBr).
Resumo:
The stereoselective synthesis of the monocyclic peloruside A analogue 4 has been achieved, following a new efficient approach for the introduction of the side chain, involving a late-stage addition of vinyl lithium species 7a to aldehyde 8. Further key steps are a highly diastereoselective allyltitanation reaction and a RCM-based macrocyclization.
Resumo:
Carnosine (β-alanyl-L-histidine) is found in high concentrations in skeletal muscle and chronic β-alanine (BA) supplementation can increase carnosine content. This placebo-controlled, double-blind study compared two different 8-week BA dosing regimens on the time course of muscle carnosine loading and 8-week washout, leading to a BA dose-response study with serial muscle carnosine assessments throughout. Thirty-one young males were randomized into three BA dosing groups: (1) high-low: 3.2 g BA/day for 4 weeks, followed by 1.6 g BA/day for 4 weeks; (2) low-low: 1.6 g BA/day for 8 weeks; and (3) placebo. Muscle carnosine in tibialis-anterior (TA) and gastrocnemius (GA) muscles was measured by 1H-MRS at weeks 0, 2, 4, 8, 12 and 16. Flushing symptoms and blood clinical chemistry were trivial in all three groups and there were no muscle carnosine changes in the placebo group. During the first 4 weeks, the increase for high-low (TA 2.04 mmol/kgww, GA 1.75 mmol/kgww) was ~twofold greater than low-low (TA 1.12 mmol/kgww, GA 0.80 mmol/kgww). 1.6 g BA/day significantly increased muscle carnosine within 2 weeks and induced continual rises in already augmented muscle carnosine stores (week 4-8, high-low regime). The dose-response showed a carnosine increase of 2.01 mmol/kgww per 100 g of consumed BA, which was only dependent upon the total accumulated BA consumed (within a daily intake range of 1.6-3.2 g BA/day). Washout rates were gradual (0.18 mmol/kgww and 0.43 mmol/kgww/week; ~2%/week). In summary, the absolute increase in muscle carnosine is only dependent upon the total BA consumed and is not dependent upon baseline muscle carnosine, the muscle type, or the daily amount of supplemented BA.
Optimizing human in vivo dosing and delivery of β-alanine supplements for muscle carnosine synthesis
Resumo:
Interest into the effects of carnosine on cellular metabolism is rapidly expanding. The first study to demonstrate in humans that chronic β-alanine (BA) supplementation (~3-6 g BA/day for ~4 weeks) can result in significantly augmented muscle carnosine concentrations (>50%) was only recently published. BA supplementation is potentially poised for application beyond the niche exercise and performance-enhancement field and into other more clinical populations. When examining all BA supplementation studies that directly measure muscle carnosine (n=8), there is a significant linear correlation between total grams of BA consumed (of daily intake ranges of 1.6-6.4 g BA/day) versus both the relative and absolute increases in muscle carnosine. Supporting this, a recent dose-response study demonstrated a large linear dependency (R2=0.921) based on the total grams of BA consumed over 8 weeks. The pre-supplementation baseline carnosine or individual subjects' body weight (from 65 to 90 kg) does not appear to impact on subsequent carnosine synthesis from BA consumption. Once muscle carnosine is augmented, the washout is very slow (~2%/week). Recently, a slow-release BA tablet supplement has been developed showing a smaller peak plasma BA concentration and delayed time to peak, with no difference in the area under the curve compared to pure BA in solution. Further, this slow-release profile resulted in a reduced urinary BA loss and improved retention, while at the same time, eliciting minimal paraesthesia symptoms. However, our complete understanding of optimizing in vivo delivery and dosing of BA is still in its infancy. Thus, this review will clarify our current knowledge of BA supplementation to augment muscle carnosine as well as highlight future research questions on the regulatory points of control for muscle carnosine synthesis.
Resumo:
Six wethers, fitted with ruminal and duodenal cannulae, were utilized in a 6 x 6 Latin Square metabolism trial to determine efficiency of microbial protein synthesis in the rumen of sheep fed forages with varying nutritional quality. Ground alfalfa hay, oat-berseem clover hay, and baled corn crop residues were fed at an ad libitum or limited intake level. Chromium-mordanted fiber, cobalt- EDTA, and purines were used to determine digesta flow and solid passage rate, dilution rate, and microbial protein production, respectively. Sheep fed alfalfa hay had greater organic matter (OM) intakes, and amounts of OM apparently and truly ruminally digested (g/d; P < .05) than sheep fed either oat-berseem clover or corn crop residues at the ad libitum intake level. Rates of slow solid and liquid passage, and postfeeding ruminal ammonia-nitrogen (N) and volatile fatty acids (VFA) concentrations were lower (P < .05) in sheep fed corn crop residues than those fed alfalfa or oat-berseem clover hay. Total duodenal flows (g/d) and efficiencies of ruminal synthesis (g crude protein/100 g of OM truly digested; P < .05) of microbial protein were less in sheep fed corn crop residues than in sheep fed alfalfa, and oatberseem clover ad libitum. Whereas total duodenal microbial-N flow was related to organic matter intake (OMI; r2 = .97) and OM truly digested in the rumen (OMTDR; r2 = .97), microbial efficiency was related to g of nitroge truly digested in the rumen (NTDR)/100 g of OMTDR (r2 = .82) and slow solid passage rate (r2 = .91).
Resumo:
Cyclic nucleotide-gated (CNG) channels are a family of ion channels activated by the binding of cyclic nucleotides. Endogenous channels have been used to measure cyclic nucleotide signals in photoreceptor outer segments and olfactory cilia for decades. Here we have investigated the subcellular localization of cGMP signals by monitoring CNG channel activity in response to agonists that activate either particulate or soluble guanylyl cyclase. CNG channels were heterologously expressed in either human embryonic kidney (HEK)-293 cells that stably overexpress a particulate guanylyl cyclase (HEK-NPRA cells), or cultured vascular smooth muscle cells (VSMCs). Atrial natriuretic peptide (ANP) was used to activate the particulate guanylyl cyclase and the nitric oxide donor S-nitroso-n-acetylpenicillamine (SNAP) was used to activate the soluble guanylyl cyclase. CNG channel activity was monitored by measuring Ca2+ or Mn2+ influx through the channels using the fluorescent dye, fura-2. We found that in HEK-NPRA cells, ANP-induced increases in cGMP levels activated CNG channels in a dose-dependent manner (0.05-10 nM), whereas SNAP (0.01-100 microM) induced increases in cGMP levels triggered little or no activation of CNG channels (P < 0.01). After pretreatment with 100 microM 3-isobutyl-1-methylxanthine (IBMX), a nonspecific phosphodiesterase inhibitor, ANP-induced Mn2+ influx through CNG channels was significantly enhanced, while SNAP-induced Mn2+ influx remained small. In contrast, we found that in the presence of IBMX, both 1 nM ANP and 100 microM SNAP triggered similar increases in total cGMP levels. We next sought to determine if cGMP signals are compartmentalized in VSMCs, which endogenously express particulate and soluble guanylyl cyclase. We found that 10 nM ANP induced activation of CNG channels more readily than 100 muM SNAP; whereas 100 microM SNAP triggered higher levels of total cellular cGMP accumulation. These results suggest that cGMP signals are spatially segregated within cells, and that the functional compartmentalization of cGMP signals may underlie the unique actions of ANP and nitric oxide.
Resumo:
The purpose of the work performed in this dissertation was to examine some of the possible regulatory mechanisms involved in the initiation of muscular atrophy during periods of decreased muscle utilization resulting from hindlimb immobilization in the rat. A 37% decrease in the rate of total muscle protein synthesis which has been observed to occur in the first 6 h of immobilization contributes significantly to the observed loss of protein during immobilization.^ The rates of cytochrome c and actin synthesis were determined in adult rat red vastus lateralis and gastrocnemius muscles, respectively, by the constant infusion and incorporation of ('3)H-tyrosine into protein. The fractional synthesis rates of both actin and cytochrome c were significantly decreased (P < 0.05) in the 6th h of hindlimb immobilization.^ RHA was extracted from adult rat gastrocnemius muscle by modification of the phenol: chloroform: SDS extraction procedures commonly used for preparation of RNA for hybridization analysis from other mammalian tissues. RNA content of rat gastrocnemius muscle, as determined by this method of extraction and its subsequent quantification by UV absorbance and orcinol assay, was significantly greater than the RNA content previously determined for adult rat gastrocnemius by other commonly employed methods.^ RNA extracted by this method from gastrocnemius muscles of control and 6h immobilized rats was subjected to "dot blot" hybridization to ('32)P-labelled probe from plasmid p749, containing a cDNA sequence complementary to (alpha)-actin mRNA and from rat skeletal muscle. (alpha)-Actin specific mRNA content as estimated by this procedure is not significantly decreased in rat gastrocnemius following 6h or hindlimb immobilization. However, (alpha)-actin specific mRNA content is significantly decreased (P < 0.05) in adult rat gastrocnemius (alpha)-actin specific mRNA is not decreased in adult rat gastrocnemius muscle following 6h of immobilization, a time when actin synthesis is significantly decreased, it is concluded that a change in (alpha)-actin specific mRNA content is not the initiating event responsible for the early decrease in actin synthesis observed in the 6th h of immobilization. ^
Resumo:
Larvae of the Colorado potato beetle, Leptinotarsa decemlineata (Say), that were orally treated with RH-0345 at 0.1 mg l?1, RH-5849 at 10 and 50 mg l?1, tebufenozide at 2 g l?1, and 20-hydroxyecdysone at 2 g l?1, showed symptoms of prematuremoulting, followed by inhibition of ecdysis. In addition, fresh weight gain and total protein content were blocked. The effects on haemolymphal and cuticular polypeptides after PAGE were linked with premature, new epicuticle deposition as was observed under the electron microscope. These observations support the concept that the ecdysteroid-mimicking action of the three nonsteroidal molecules is specific
Resumo:
The present paper describes the total chemical synthesis of the precursor molecule of the Aequorea green fluorescent protein (GFP). The molecule is made up of 238 amino acid residues in a single polypeptide chain and is nonfluorescent. To carry out the synthesis, a procedure, first described in 1981 for the synthesis of complex peptides, was used. The procedure is based on performing segment condensation reactions in solution while providing maximum protection to the segment. The effectiveness of the procedure has been demonstrated by the synthesis of various biologically active peptides and small proteins, such as human angiogenin, a 123-residue protein analogue of ribonuclease A, human midkine, a 121-residue protein, and pleiotrophin, a 136-residue protein analogue of midkine. The GFP precursor molecule was synthesized from 26 fully protected segments in solution, and the final 238-residue peptide was treated with anhydrous hydrogen fluoride to obtain the precursor molecule of GFP containing two Cys(acetamidomethyl) residues. After removal of the acetamidomethyl groups, the product was dissolved in 0.1 M Tris⋅HCl buffer (pH 8.0) in the presence of DTT. After several hours at room temperature, the solution began to emit a green fluorescence (λmax = 509 nm) under near-UV light. Both fluorescence excitation and fluorescence emission spectra were measured and were found to have the same shape and maxima as those reported for native GFP. The present results demonstrate the utility of the segment condensation procedure in synthesizing large protein molecules such as GFP. The result also provides evidence that the formation of the chromophore in GFP is not dependent on any external cofactor.
Resumo:
Local rates of cerebral protein synthesis (lCPSleu) were measured with the quantitative autoradiographic [1-14C]leucine method in a genetic mouse model (Pahenu2) of phenylketonuria. As in the human disease, Pahenu2 mice have a mutation in the gene for phenylalanine hydroxylase. We compared adult homozygous (HMZ) and heterozygous (HTZ) Pahenu2 mice with the background strain (BTBR). Arterial plasma concentrations of phenylalanine (Phe) were elevated in both HMZ and HTZ mutants by 21 times and 38%, respectively. In the total acid-soluble pool in brain concentrations of Phe were higher and other neutral amino acids lower in HMZ mice compared with either HTZ or BTBR mice indicating a partial saturation of the l-amino acid carrier at the blood brain barrier by the elevated plasma Phe concentrations. In a series of steady-state experiments, the contribution of leucine from the arterial plasma to the tRNA-bound pool in brain was found to be statistically significantly reduced in HMZ mice compared with the other groups, indicating that a greater fraction of leucine in the precursor pool for protein synthesis is derived from protein degradation. We found reductions in lCPSleu of about 20% throughout the brain in the HMZ mice compared with the other two groups, but no reductions in brain concentrations of tRNA-bound neutral amino acids. Our results in the mouse model suggest that in untreated phenylketonuria in adults, the partial saturation of the l-amino acid transporter at the blood–brain barrier may not underlie a reduction in cerebral protein synthesis.
Resumo:
The mechanisms that underlie the maintenance of and increase in mutant mitochondrial DNA (mtDNA) are central to our understanding of mitochondrial disease. We have therefore developed a technique based on saponin permeabilisation that allows the study of mtDNA synthesis in intact cells. Permeabilisation of cells has been extensively used in an established method both for studying transcription and DNA replication in the nucleus and for measuring respiratory chain activities in mitochondria. We have quantitatively studied incorporation of radiolabelled DNA precursors into mtDNA in human cell lines derived from controls and from patients with mitochondrial DNA disease. Total cell DNA is extracted, restriction digested and Southern blotted, newly synthesised mtDNA being proportional to the label incorporated in each restriction band. A rate of synthesis can then be derived by estimating the relative steady-state mtDNA after probing with full-length mtDNA. Where co-existing mutant and wild-type mtDNA (heteroplasmy) can be distinguished using restriction digestion, their rates of synthesis can be compared within a single cell line. This will be particularly useful in elucidating the pathophysiology of mtDNA diseases in which the distribution of mutant and wild-type mtDNA in cell lines in patient tissues may evolve with time.
Resumo:
Tomato (Lycopersicon esculentum) mitochondria contain both alternative oxidase (AOX) and uncoupling protein as energy-dissipating systems that can decrease the efficiency of oxidative phosphorylation. We followed the cyanide (CN)-resistant, ATP-synthesis-sustained, and uncoupling-protein-sustained respiration of isolated mitochondria, as well as the immunologically detectable levels of uncoupling protein and AOX, during tomato fruit ripening from the mature green stage to the red stage. The AOX protein level and CN-resistant respiration of isolated mitochondria decreased with ripening from the green to the red stage. The ATP-synthesis-sustained respiration followed the same behavior. In contrast, the level of uncoupling protein and the total uncoupling-protein-sustained respiration of isolated mitochondria decreased from only the yellow stage on. We observed an acute inhibition of the CN-resistant respiration by linoleic acid in the micromolar range. These results suggest that the two energy-dissipating systems could have different roles during the ripening process.
Resumo:
Heme and chlorophyll accumulate to high levels in legume root nodules and in photosynthetic tissues, respectively, and they are both derived from the universal tetrapyrrole precursor δ-aminolevulinic acid (ALA). The first committed step in ALA and tetrapyrrole synthesis is catalyzed by glutamyl-tRNA reductase (GTR) in plants. A soybean (Glycine max) root-nodule cDNA encoding GTR was isolated by complementation of an Escherichia coli GTR-defective mutant for restoration of ALA prototrophy. Gtr mRNA was very low in uninfected roots but accumulated to high levels in root nodules. The induction of Gtr mRNA in developing nodules was subsequent to that of the gene Enod2 (early nodule) and coincided with leghemoglobin mRNA accumulation. Genomic analysis revealed two Gtr genes, Gtr1 and a 3′ portion of Gtr2, which were isolated from the soybean genome. RNase-protection analysis using probes specific to Gtr1 and Gtr2 showed that both genes were expressed, but Gtr1 mRNA accumulated to significantly higher levels. In addition, the qualitative patterns of expression of Gtr1 and Gtr2 were similar to each other and to total Gtr mRNA in leaves and nodules of mature plants and etiolated plantlets. The data indicate that Gtr1 is universal for tetrapyrrole synthesis and that a Gtr gene specific for a tissue or tetrapyrrole is unlikely. We suggest that ALA synthesis in specialized root nodules involves an altered spatial expression of genes that are otherwise induced strongly only in photosynthetic tissues of uninfected plants.