976 resultados para Cylindrical shapes


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Pós-graduação em Engenharia Mecânica - FEB

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The purpose of the study was to use scanning electron microscopy and energy dispersive x-ray spectrometry to assess possible morphologic and chemical changes after performing double-insertion and pullout tests of implants of different shapes and surface treatments. Four different types of implants were used—cylindrical machined-surface implants, cylindrical double-surface–treated porous implants, cylindrical surface-treated porous implants, and tapered surface-treated porous implants—representing a total of 32 screws. The implants were inserted into synthetic bone femurs, totaling 8 samples, before performing each insertion with standardized torque. After each pullout the implants were analyzed by scanning electron microscopy and energy dispersive x-ray spectrometry using a universal testing machine and magnified 35 times. No structural changes were detected on morphological surface characterization, only substrate accumulation. As for composition, there were concentration differences in the titanium, oxygen, and carbon elements. Implants with surface acid treatment undergo greater superficial changes in chemical composition than machined implants, that is, the greater the contact area of the implant with the substrate, the greater the oxide layer change. In addition, prior manipulation can alter the chemical composition of implants, typically to a greater degree in surface-treated implants.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Corrole and four of its isomers with subtle structural changes promoted by exchange of nitrogen and carbon atoms in the corrole ring have been studied by traveling wave ion mobility mass spectrometry and collision induced dissociation experiments. Significant differences in shapes and charge distributions for their protonated molecules were found to lead to contrasting gas phase mobilities, most particularly for corrorin, the most "confused" isomer. Accordingly, corrorin was predicted by B3LYP/6-31g(d,p) and collisional cross section calculations to display the most compact tri-dimensional structure, whereas NCC4 and corrole were found to be the most planar isomers. Better resolution between the corrole isomers was achieved using the more polarizable and massive CO2 as the drift gas. Sequential losses of HF molecules were found to dominate the dissociation chemistry of the protonated molecules of these corrole isomers, but their unique structures caused contrasting labilities towards CID, whereas NCC4 showed a peculiar and structurally diagnostic loss of NH3, allowing its prompt differentiation from the other isomers.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Study Design. Ex vivo study of the mechanical performance of cylindrical and dual-core pedicle screws after insertion, removal, and reinsertion in the same hole. Objective. To evaluate the effect of repeated use of same screw hole on the insertion torque and the retentive strength of the cylindrical and dual-core screws. Summary of Background Data. Insertion and removal of pedicle screws is sometimes necessary during surgical procedure to assess the integrity of the pilot-hole wall. However, this maneuver may compromise the implant-holding capacity. Methods. Sixty thoracolombar vertebrae (T13-L5), harvested from 10 healthy calves, were used to insert 2 different designs of pedicle screws: cylindrical (5.0-mm outer diameter) and dual-core screws (5.2-mm outer diameter). Three experimental groups were created on the basis of the number of insertions of the screws and 2 subgroups were established according to the core pedicle screw design (dual-core and cylindrical). The insertion torque was measured during initial insertion, second insertion, and third insertion. Pullout screw tests were performed using a universal testing machine to evaluate the pullout strength after initial insertion, second insertion, and third insertion. Results. Significant reductions of 38% in mean insertion torque and 30% in mean pullout strength of dual-core screw were observed between the initial insertion and the third insertion. The cylindrical screw observed significant reductions of 52.5% in mean insertion torque and 42.3% in mean pullout strength between the initial insertion and the third insertion. A reduction of mean insertion torque and pullout strength between the first insertion and the second insertion but without significance was also observed for both types of screws. Conclusion. Insertions and reinsertion of either cylindrical or dual-core pedicle screws have compromised insertion torque and pullout strength of the implants as measured by mechanical tests.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

[EN] In this paper we present a variational technique for the reconstruction of 3D cylindrical surfaces. Roughly speaking by a cylindrical surface we mean a surface that can be parameterized using the projection on a cylinder in terms of two coordinates, representing the displacement and angle in a cylindrical coordinate system respectively. The starting point for our method is a set of different views of a cylindrical surface, as well as a precomputed disparity map estimation between pair of images. The proposed variational technique is based on an energy minimization where we balance on the one hand the regularity of the cylindrical function given by the distance of the surface points to cylinder axis, and on the other hand, the distance between the projection of the surface points on the images and the expected location following the precomputed disparity map estimation between pair of images. One interesting advantage of this approach is that we regularize the 3D surface by means of a bi-dimensio al minimization problem. We show some experimental results for large stereo sequences.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

[EN] In this paper we present a method for the regularization of 3D cylindrical surfaces. By a cylindrical surface we mean a 3D surface that can be expressed as an application S(l; µ) ! R3 , where (l; µ) represents a cylindrical parametrization of the 3D surface. We built an initial cylindrical parametrization of the surface. We propose a new method to regularize such cylindrical surface. This method takes into account the information supplied by the disparity maps computed between pair of images to constraint the regularization of the set of 3D points. We propose a model based on an energy which is composed of two terms: an attachment term that minimizes the difference between the image coordinates and the disparity maps and a second term that enables a regularization by means of anisotropic diffusion. One interesting advantage of this approach is that we regularize the 3D surface by using a bi-dimensional minimization problem.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This work describes the synthesis of a new class of rod-coil block copolymers, oligosubstituted shape persistent macrocycles, (coil-ring-coil block copolymers), and their behavior in solution and in the solid state.The coil-ring-coil block copolymers are formed by nanometer sized shape persistent macrocycles based on the phenyl-ethynyl backbone as rigid block and oligomers of polystyrene or polydimethylsiloxane as flexible blocks. The strategy that has been followed is to synthesize the macrocycles with an alcoholic functionality and the polymer carboxylic acids independently, and then bind them together by esterification. The ester bond is stable and relatively easy to form.The synthesis of the shape persistent macrocycles is based on two separate steps. In the first step the building blocks of the macrocycles are connected by Hagiara-Sogonaschira coupling to form an 'half-ring' as precursor, that contains two free acetylenes. In the second step the half-ring is cyclized by forming two sp-sp bonds via a copper-catalyzed Glaser coupling under pseudo-high-dilution conditions. The polystyrene carboxylic acid was prepared directly by siphoning the living anionic polymer chain into a THF solution, saturated with CO2, while the polydimethylsiloxane carboxylic acid was obtained by hydrosilylating an unsaturated benzylester with an Si-H terminated polydimethylsiloxane, and cleavage of the ester. The carbodiimide coupling was found to be the best way to connect macrocycles and polymers in high yield and high purity.The polystyrene-ring-polystyrene block copolymers are, depending on the molecular weight of the polystyrene, lyotropic liquid crystals in cyclohexane. The aggregation behavior of the copolymers in solution was investigated in more detail using several technique. As a result it can be concluded that the polystyrene-ring-polystyrene block copolymers can aggregate into hollow cylinder-like objects with an average length of 700 nm by a combination of shape complementary and demixing of rigid and flexible polymer parts. The resulting structure can be described as supramolecular hollow cylindrical brush.If the lyotropic solution of the polystyrene-ring-polystyrene block copolymers are dried, they remain birefringent indicating that the solid state has an ordered structure. The polydimethylsiloxane-ring-polydimethylsiloxane block copolymers are more or less fluid at room temperature, and are all birefringent (termotropic liquid crystals) as well. This is a prove that the copolymers are ordered in the fluid state. By a careful investigation using electron diffraction and wide-angle X-ray scattering, it has been possible to derive a model for the 3D-order of the copolymers. The data indicate a lamella structure for both type of copolymers. The macrocycles are arranged in a layer of columns. These crystalline layers are separated by amorphous layers which contain the polymers substituents.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The Ph.D. thesis deals with the conformational study of individual cylindrical polymer brush molecules using atomic force microscopy (AFM). Imaging combined with single molecule manipulation has been used to unravel questions concerning conformational changes, desorption behavior and mechanical properties of individual macromolecules and supramolecular structures. In the first part of the thesis (chapter 5) molecular conformations of cylindrical polymer brushes with poly-(N-isopropylacrylamide) (PNIPAM) side chains were studied in various environmental conditions. Also micelle formation of cylindrical brush-coil blockcopolymers with polyacrylic acid side chains and polystyrene coil have been visualized. In chapter 6 the mechanical properties of single cylindrical polymer brushes with (PNIPAM) side chains were investigated. Assuming that the brushes adopt equilibrium conformation on the surface, an average persistence length of lp= (29 ± 3) nm was determined by the end-to-end distance vs. contour length analysis in terms of the wormlike chain (WLC) model. Stretching experiments suggest that an exact determination of the persistence length using force extension curves is impeded by the contribution of the side chains. Modeling the stretching of the bottle brush molecule as extension of a dual spring (side chain and main chain) explains the frequently observed very low persistence length arising from a dominant contribution of the side chain elasticity at small overall contour lengths. It has been shown that it is possible to estimate the “true” persistence length of the bottle brush molecule from the intercept of a linear extrapolation of the inverse square root of the apparent persistence length vs. the inverse contour length plot. By virtue of this procedure a “true” persistence length of 140 nm for the PNIPAM brush molecules is predicted. Chapter 7 and 8 deal with the force-extension behavior of PNIPAM cylindrical brushes studied in poor solvent conditions. The behavior is shown to be qualitatively different from that in a good solvent. Force induced globule-cylinder conformational changes are monitored using “molecule specific force spectroscopy” which is a combined AFM imaging and SMFS technique. An interesting behavior of the unfolding-folding transitions of single collapsed PNIPAM brush molecules has been observed by force spectroscopy using the so called “fly-fishing” mode. A plateau force is observed upon unfolding the collapsed molecule, which is attributed to a phase transition from a collapsed brush to a stretched conformation. Chapter 9 describes the desorption behavior of single cylindrical polyelectrolyte brushes with poly-L-lysine side chains deposited on a mica surface using the “molecule specific force spectroscopy” technique to resolve statistical discrepancies usually observed in SMFS experiments. Imaging of the brushes and inferring the persistence length from a end-to-end distance vs. contour length analysis results in an average persistence length of lp = (25 ± 5) nm assuming that the chains adopt their equilibrium conformation on the surface. Stretching experiments carried out on individual poly-L-lysine brush molecules by force spectroscopy using the “fly-fishing” mode provide a persistence length in the range of 7-23 nm in reasonable accordance with the imaging results. In chapter 10 the conformational behavior of cylindrical poly-L-lysine brush-sodium dodecyl sulfate complexes was studied using AFM imaging. Surfactant induced cylinder to helix like to globule conformational transitions were observed.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A 2D Unconstrained Third Order Shear Deformation Theory (UTSDT) is presented for the evaluation of tangential and normal stresses in moderately thick functionally graded conical and cylindrical shells subjected to mechanical loadings. Several types of graded materials are investigated. The functionally graded material consists of ceramic and metallic constituents. A four parameter power law function is used. The UTSDT allows the presence of a finite transverse shear stress at the top and bottom surfaces of the graded shell. In addition, the initial curvature effect included in the formulation leads to the generalization of the present theory (GUTSDT). The Generalized Differential Quadrature (GDQ) method is used to discretize the derivatives in the governing equations, the external boundary conditions and the compatibility conditions. Transverse and normal stresses are also calculated by integrating the three dimensional equations of equilibrium in the thickness direction. In this way, the six components of the stress tensor at a point of the conical or cylindrical shell or panel can be given. The initial curvature effect and the role of the power law functions are shown for a wide range of functionally conical and cylindrical shells under various loading and boundary conditions. Finally, numerical examples of the available literature are worked out.