960 resultados para Cyclooxygenase-2 inhibitor


Relevância:

30.00% 30.00%

Publicador:

Resumo:

In the present study, we investigated whether saliva from Phlebotomus papatasi and Phlebotomus duboscqi inhibited antigen-induced neutrophil migration and the mechanisms involved in these effects. The pretreatment of immunized mice with salivary gland extracts (SGE) of both phlebotomines inhibited OVA challenge-induced neutrophil migration and release of the neutrophil chemotactic mediators, MIP-1 alpha, TNF-alpha, and leukotriene B-4 (LTB4). Furthermore, SGE treatment enhanced the production of anti-inflammatory mediators, IL-10 and PGE(2). SGE treatments failed to inhibit neutrophil migration and MIP-1 alpha and LTB4 production in IL-10(-/-) mice, also failing in mice treated with nonselective (indomethacin) or selective (rofecoxibe) cyclooxygenase (COX) inhibitors. COX inhibition resulted in diminished SGE-induced IL-10 production, and PGE(2) release triggered by SGE remained increased in IL-10(-/-) mice, suggesting that prostanoids are acting through an IL-10-dependent mechanism. SGE treatments in vivo reduced the OVA-induced lymphoproliferation of spleen-derived cells. Further, the in vitro incubation of bone marrow-derived dendritic cells (DC) with SGE inhibited the proliferation of CD4(+) T cells from OVA-immunized mice, which was reversed by indomethacin and anti-IL-10 antibody treatments. Supporting these results, SGE induced the production of PGE(2) and IL-10 by DC, which were blocked by COX inhibition. These effects were associated with the reduction of DC-membrane expression of MHC-II and CD86 by SGE treatment. Altogether, the results showed that Phlebotomine saliva inhibits immune inflammation-induced neutrophil migration by an autocrine DC sequential production of PGE(2)/IL-10, suggesting that the saliva constituents might be promising therapeutic molecules to target immune inflammatory diseases.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The strong inflammatory reaction that occurs in the heart during the acute phase of Trypanosoma cruzi infection is modulated by cytokines and chemokines produced by leukocytes and cardiomyocytes. Matrix metalloproteinases (MMPs) have recently emerged as modulators of cardiovascular inflammation. In the present study we investigated the role of MMP-2 and MMP-9 in T. cruzi-induced myocarditis, by use of immunohistochemical analysis, gelatin zymography, enzyme-linked immunosorbent assay, and real-time polymerase chain reaction to analyze the cardiac tissues of T. cruzi-infected C57BL/6 mice. Increased transcripts levels, immunoreactivity, and enzymatic activity for MMP-2 and MMP-9 were observed by day 14 after infection. Mice treated with an MMP inhibitor showed significantly decreased heart inflammation, delayed peak in parasitemia, and improved survival rates, compared with the control group. Reduced levels of cardiac tumor necrosis factor-alpha, interferon-gamma, serum nitrite, and serum nitrate were also observed in the treated group. These results suggest an important role for MMPs in the induction of T. cruzi-induced acute myocarditis.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

IL-33, a new member of the IL-1 family, signals through its receptor ST2 and induces T helper 2 (Th2) cytokine synthesis and mediates inflammatory response. We have investigated the role of IL-33 in antigen-induced hypernociception. Recombinant IL-33 induced cutaneous and articular mechanical hype rn ociception in a time- and dose-dependent manner. The hypernociception was inhibited by soluble (s) ST2 (a decoy receptor of IL-33), IL-1 receptor antagonist (IL-1ra), bosentan [a dual endothelin (ET)(A)/ETB receptor antagonist], clazosentan (an ETA receptor antagonist), or indomethacin (a cyclooxygenase inhibitor). IL-33 induced hypernociception in IL-18(-/-) mice but not in TNFR1(-/-) or IFN gamma(-/-) mice. The IL-33-induced hypernociception was not affected by blocking IL-15 or sympathetic amines (guanethidine). Furthermore, methylated BSA (mBSA)-induced cutaneous and articular mechanical hypernociception depended on TNFR1 and IFN gamma and was blocked by sST2, IL-1ra, bosentan, clazosentan, and indomethacin. mBSA also induced significant IL-33 and ST2 mRNA expression. Importantly, we showed that mBSA induced hypernociception via the IL-33 -> TNF alpha -> IL-1 beta -> IFN gamma -> ET-1 -> PGE(2) signaling cascade. These results therefore demonstrate that IL-33 is a key mediator of immune inflammatory hype rn ociception normally associated with a Th1 type of response, revealing a hitherto unrecognized function of IL-33 in a key immune pharmacological pathway that may be amenable to therapeutic intervention.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Leukotriene B-4 (LTB4) mediates different inflammatory events such as neutrophil migration and pain. The present study addressed the mechanisms of LTB4-mediated joint inflammation-induced hypernociception. It was observed that zymosan-induced articular hypernociception and neutrophil migration were reduced dose-dependently by the pretreatment with MK886 (1-9 mg/kg; LT synthesis inhibitor) as well as in 5-lypoxygenase-deficient mice (5LO(-/-)) or by the selective antagonist of the LTB4 receptor (CP105696; 3 mg/kg). Histological analysis showed reduced zymosan-induced articular inflammatory damage in 5LO(-/-) mice. The hypernociceptive role of LTB4 was confirmed further by the demonstration that joint injection of LTB4 induces a dose (8.3, 25, and 75 ng)-dependent articular hypernociception. Furthermore, zymosan induced an increase in joint LTB4 production. Investigating the mechanism underlying LTB4 mediation of zymosan-induced hypernociception, LTB4-induced hypernociception was reduced by indomethacin (5 mg/kg), MK886 (3 mg/kg), celecoxib (10 mg/kg), antineutrophil antibody (100 mu g, two doses), and fucoidan (20 mg/kg) treatments as well as in 5LO(-/-) mice. The production of LTB4 induced by zymosan in the joint was reduced by the pretreatment with fucoidan or antineutrophil antibody as well as the production of PGE(2) induced by LTB4. Therefore, besides reinforcing the role of endogenous LTB4 as an important mediator of inflamed joint hypernociception, these results also suggested that the mechanism of LTB4-induced articular hypernociception depends on prostanoid and neutrophil recruitment. Furthermore, the results also demonstrated clearly that LTB4-induced hypernociception depends on the additional release of endogenous LTs. Concluding, targeting LTB4 synthesis/action might constitute useful therapeutic approaches to inhibit articular inflammatory hypernociception.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Introduction. Diabetes is a risk factor for female sexual dysfunction (FSD). FSD has several etiologies, including a vasculogenic component that could be exacerbated in diabetes. The internal pudendal artery supplies blood to the vagina and clitoris and diabetes-associated functional abnormalities in this vascular bed may contribute to FSD. Aim. The Goto-Kakizaki (GK) rat is a non-obese model of type 2 diabetes with elevated endothelin-1 (ET-1) activity. We hypothesize that female GK rats have diminished sexual responses and that the internal pudendal arteries demonstrate increased ET-1 constrictor sensitivity. Methods. Female Wistar and GK rats were used. Apomorphine (APO)-mediated genital vasocongestive arousal (GVA) was measured. Functional contraction (ET-1 and phenylephrine) and relaxation (acetylcholine, ACh) in the presence or absence of the ETA receptor antagonist (ET(A)R; atrasentan) or Rho-kinase inhibitor (Y-27632) were assessed in the internal pudendal and mesenteric arteries. Protein expression of ET-1 and RhoA/Rho-kinase signaling pathway was determined in the internal pudendal and mesenteric arteries. Main Outcome Measure. APO-mediated GVAs; contraction and relaxation of internal pudendal and mesenteric arteries; ET-1/RhoA/Rho-kinase protein expression. Results. GK rats demonstrated no APO-induced GVAs. Internal pudendal arteries, but not mesenteric arteries, from GK rats exhibited greater contractile sensitivity to ET-1 compared with Wistar arteries. ETAR blockade reduced ET-1-mediated constriction in GK internal pudendal and mesenteric arteries. Rho-kinase inhibition reduced ET-1-mediated constriction of GK internal pudendal but not mesenteric arteries; however, it had no effect on arteries from Wistar rats. RhoA protein expression was elevated in GK internal pudendal arteries. At the highest concentrations, ACh-mediated relaxation was greater in the GK internal pudendal artery; however, no difference was observed in the mesenteric artery. Conclusions. Female GK rats demonstrate decreased sexual responses that may be because of increased constrictor sensitivity to the ET-1/RhoA/Rho-kinase signaling in the internal pudendal artery. Allahdadi KJ, Hannan JL, Ergul A, Tostes RC, and Webb RC. Internal pudendal artery from type 2 diabetic female rats demonstrate elevated endothelin-1-mediated constriction. J Sex Med 2011;8:2472-2483.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Background: Enhanced cardiac matrix metalloproteinase activity (MMPs) has been associated with ventricular remodeling and cardiac dysfunction. It is unknown whether MMPs contribute to systolic/diastolic dysfunction and compensatory remodeling in 2-kidney, 1-clip (2K1C) hypertensive rats. To test this hypothesis, we used 2K1C rats after 2 weeks of surgery treated or not with a nonspecific inhibitor of MMPs (doxycycline). Methods and Results: We found that blood pressure and +/-dP/dt increased in 2K1C rats compared with sham groups, and these parameters were attenuated by doxycycline treatment (P < .05). Doxycycline also reversed cardiac hypertrophy observed in 2K1C rats (P < .05). Hypertensive rats showed increased MMP-2 levels in zymograms and in the tissue by immunofluorescence (P < .05) compared with sham groups. Increased total gelatinolytic activity was observed in untreated 2K1C rats when compared with sham groups (P < .05). Doxycycline decreased total gelatinolytic activity in 2K1C rats to control levels (P < .05). Conclusion: An imbalance in gelatinolytic activity, with increased MMP-2 levels and activity underlies the development of morphological and functional alterations found in the compensatory hypertrophy observed in 2K1C hearts. Because function and structure were restored by doxycycline, the inhibition of MMPs or their modulation may provide beneficial effects for therapeutic intervention in cardiac hypertrophy. (J Cardiac Fail 2010;16:599-608)

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Proteomic approaches have been useful for the identification of aberrantly expressed proteins in complex diseases such as cancer. These proteins are not only potential disease biomarkers, but also targets for therapy. The aim of this study was to identify differentially expressed proteins in diffuse astrocytoma grade II, anaplastic astrocytoma grade III and glioblastoma multiforme grade IV in human tumor samples and in non-neoplastic brain tissue as control using 2-DE and MS. Tumor and control brain tissue dissection was guided by histological hematoxylin/eosin tissue sections to provide more than 90% of tumor cells and astrocytes. Six proteins were detected as up-regulated in higher grade astrocytomas and the most important finding was nucleophosmin (NPM) (p < 0.05), whereas four proteins were down-regulated, among them raf kinase inhibitor protein (RKIP) (p < 0.05). We report here for the first time the alteration of NPM and RKIP expression in brain cancer. Our focus on these proteins was due to the fact that they are involved in the PI3K/AKT/mTOR and RAS/RAF/MAPK pathways, known for their contribution to the development and progression of gliomas. The proteomic data for NPM and RKIP were confirmed by Western blot, quantitative real-time PCR and immunohistochemistry. Due to the participation of NPM and RKIP in uncontrolled proliferation and evasion of apoptosis, these proteins are likely targets for drug development.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Lead exposure increases blood pressure (BP) by unknown mechanisms. Many recent studies have shown the involvement of matrix metalloproteinases (MMPs) in hypertension, particularly MMP-2. In this work, we have examined whether MMP-2 levels increase with lead-induced increase in BP. We have also investigated whether doxycycline (an MMP inhibitor) affects these alterations. To this end, rats were exposed to lead (90 ppm) and treated with doxycycline or vehicle for 8 weeks. Similar aortic and whole blood lead levels were found in lead-exposed rats treated with either doxycycline or vehicle. Lead-induced increases in BP and aortic MMP-2 levels (activity, protein, and mRNA) were blunted by doxycycline. Doxycycline also prevented lead-induced increases in the MMP-2/TIMP-2 mRNA ratio. No significant changes in vascular reactivity or morphometric parameters were found. In conclusion, lead exposure increases BP and vascular MMP-2, which is blunted by doxycycline. This observation suggests that MMP-2 may play a role in lead-induced increases in BP.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Ischemia and reperfusion injury (IRI) contributes to the development of chronic interstitial fibrosis/tubular atrophy in renal allograft patients, Cyclooxygenase (COX) 1 and 2 actively participate in acute ischemic injury by activating endothelial cells and inducing oxidative stress. Furthermore, blockade of COX I and 2 has been associated with organ improvement after ischemic damage. The aim of this study was to evaluate the role of COX I and 2 in the development of fibrosis by performing a COX I and 2 blockade immediately before IRI We subjected C57BI/6 male mice to 60 min of unilateral renal pedicle occlusion, Prior to surgery mice were either treated with indomethacin (IMT) at days -1 and 0 or were untreated. Blood and kidney samples were collected 6 wks after IRI. Kidney samples were analyzed by real-time reverse transcription-poly me rase chain reaction for expression of transforming growth factor beta (TGF-beta), monocyte chemoattractant protein 1 (MCP-1), osteopontin (OPN), tumor necrosis factor alpha (TNF-alpha), interleukin (IL)-1 beta, IL-10, heme oxygenose 1 (HO-1), vimentin, connective-tissue growth factor (CTGF), collagen 1, and bone morphogenic protein 7 (BMP-7), To assess tissue fibrosis we performed morphometric analyses and Sirius red staining. We also performed immunohistochemical analysis of anti-actin smooth muscle, Renal function did not significantly differ between groups. Animals pretreated with IMT showed significantly less interstitial fibrosis than nontreated animals. Gene transcript analyses showed decreased expression of TGF-beta, MCP-1,TNF-alpha, IL-1-beta, vimentin, collagen 1, CTGF and IL-10 mRNA (all P < 0.05), Moreover, HO-I mRNA was increased in animals pretreated with IMT (P < 0.05) Conversely, IMT treatment decreased osteopontin expression and enhanced BMP-7 expression, although these levels did rot reach statistical significance when compared with control expression levels, I he blockade of COX 1 and 2 resulted in less tissue fibrosis, which was associated with a decrease in proinflammatory cytokines and enhancement of the protective cellular response.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Hypertension induces vascular alterations that are associated with up-regulation of matrix metalloproteinases (MMPs). While these alterations may be blunted by doxycycline, a non-selective MMPs inhibitor, no previous study has examined the effects of different doses of doxycycline on these alterations. This is important because doxycycline has been used at sub-antimicrobial doses, and the use of lower doses may prevent the emergence of antibiotic-resistant microorganisms. We studied the effects of doxycycline at 3, 10 and 30 mg/kg per day on the vascular alterations found in the rat two kidneyone clip (2K1C) hypertension (n = 20 rats/group). Systolic blood pressure (SBP) was monitored during 4 weeks of treatment. We assessed endothelium-dependent and independent relaxations. Quantitative morphometry of structural changes in the aortic wall was studied, and aortic MMP-2 levels/proteolytic activity were determined by gelatin and in situ zymography, respectively. All treatments attenuated the increases in SBP in hypertensive rats (195.4 +/- 3.9 versus 177.2 +/- 6.2, 176.3 +/- 4.5, and 173 +/- 5.1 mmHg in 2K1C hypertensive rats treated with vehicle, or doxycycline at 3, 10, 30 mg/kg per day, respectively (all p < 0.01). However, only the highest dose prevented 2K1C-induced reduction in endothelium-dependent vasorelaxation (p < 0.05), vascular hypertrophy and increases in MMP-2 levels (all p < 0.05). In conclusion, our results suggest that relatively lower doses of doxycycline do not attenuate the vascular alterations found in the 2K1C hypertension model, and only the highest dose of doxycycline affects MMPs and vascular structure. Our results support the idea that the effects of doxycycline on MMP-2 and vascular structure are pressure independent.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Immune challenges during neonatal period may permanently program immune responses later in life, including endotoxin fever. We tested the hypothesis that neonatal endotoxin exposure affects stress fever in adult rats. In control rats (treated with saline as neonates; nSal) body temperature peaked similar to 1.5 degrees C during open-field stress, whereas in rats exposed to endotoxin (lipopolysaccharide, LPS) as neonates (nLPS) stress fever was significantly attenuated. Following stress, plasma corticosterone levels significantly increased from 74.29 +/- 7.05 ng ml(-1) to 226.29 +/- 9.87 ng ml(-1) in nSal rats, and from 83.43 +/- 10.31 ng ml(-1) to 324.7 +/- 36.87 ng ml(-1) in nLPS rats. Animals treated with LPS as neonates and adrenalectomized one week before experimentation no longer displayed the attenuated febrile response to stress. This attenuated stress fever caused by an increased corticosterone secretion is likely to be linked to an inhibitory effect of glucocorticoids on cyclooxygenase activity/PGE(2) production in preoptic/anteroventral third ventricular region (AV3V) since stress failed to cause a significant increase in PGE(2) in nLPS rats, and this effect was reverted by adrenalectomy. Altogether, the present results indicate that endogenous glucocorticoids are key modulators of the attenuated stress fever in adult rats treated with LPS as neonates, and they act downregulating PGE(2) production in AV3V. Moreover, our findings also support the notion that neonatal immune stimulus affects programming of stress responses during adulthood, despite the fact that inflammation and stress are two distinct processes mediated largely by different neurobiological mechanisms. (C) 2010 Elsevier B.V. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Structural vascular changes in two-kidney, one-clip (2K-1C) hypertension may result from increased matrix metalloproteinase (MMP)-2 activity. MMP-2 activation is regulated by other MMPs, including transmembrane-MMPs, and by tissue inhibitors of MMPs (TIMPs). We have investigated the localization of MMP-2, -9, -14, and TIMPs 1-4 in hypertensive aortas and measured their levels by zymography/Western blotting and immunohistochemistry. Gelatinolytic activity was assayed in tissues by in situ zymography. Sham-operated and 2K-1C hypertensive rats were treated with doxycycline (or vehicle) for 8 weeks, and the systolic blood pressure was monitored weekly. Doxycycline attenuated 2K-1C hypertension (165 +/- 11.7 mmHg versus 213 +/- 7.9 mm Hg in hypertensive controls, P<0.01), and completely prevented increase in the thicknesses of the media and the intima in 2K-1C animals (P<0.01). Increased amounts of MMP-2, -9, and -14 were found in hypertensive aortas, as well as enhanced gelatinolytic activity. A gradient in the localization of MMP-2, -9, and -14 was found, with increased amounts detected in the intima, at sites with higher gelatinolytic activity. Doxycycline attenuated hypertension induced increases in all the 3 investigated MMPs in both the media and the intima (all P<0.05). but it did not change the amounts of TIMPs 1-4 (P>0.05). Therefore, an imbalance between increased amounts of MMPs at the tissue level without a corresponding increase in the quantities of TIMPs, particularly in the intima and inner media layers, appears to account for the increased proteolytic activity found in 2K-1C hypertension-induced maladaptive vascular remodeling. (C) 2009 Elsevier B.V. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

P>Background This study aimed at comparing the levels of matrix metalloproteinase (MMP)-8, tissue Inhibitor of MMPs (TIMP)-1 and TIMP-2, Myeloperoxidase (MPO), and MMP-9 in the gingival crevicular fluid (GCF) of chronic periodontitis (CP) patients and controls at baseline and 3 months after non-surgical therapy. Materials and Methods GCF was collected from one site of 15 control subjects and 27 CP patients. MMP-8, MMP-9, TIMP-1, and TIMP-2 were determined by Enzyme-linked immunoabsorbent assay; different forms of MMP-9, by gelatin zymography; and MPO, colorimetrically. Results At baseline, higher levels of MMP-8, TIMP-2, MPO, and the 87 kDa-MMP-9 were found in patients compared with controls (p < 0.001), and these molecules decreased after therapy (p < 0.03). There were no differences between the groups with respect to the higher molecular forms of MMP-9 (180, 130, 92 kDa) or total MMP-9 at baseline. No differences were observed in TIMP-1 levels. In controls, decreased levels of TIMP-2 and the higher molecular forms of MMP-9 (180, 130, 92 kDa) were found 3 months after therapy compared with baseline (p < 0.01). Conclusions Higher levels of MMP-8, TIMP-2, MPO, and 87 kDa MMP-9 were found in the GCF of patients compared with controls, and these markers decreased 3 months after periodontal therapy.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Abnormal matrix metalloproteinases (MMPs) activity causes cardiovascular diseases. Because hyperglycemia increase MMPs activities through increased oxidative stress. we hypothesized that antioxidant effects produced by lercanidipine could attenuate the increases in MMP-2 expression/activity in diabetic rats. Control and diabetic (alloxan-induced diabetes) rats received lercanidipine 2.5 mg/kg/day (or tap water) starting three weeks after alloxan (or vehicle) injections. Blood pressure was monitored weekly. After six weeks of treatment, vascular reactivity and structural changes were assessed in aortic rings. MMP-2 levels were determined by gelatin zymography, and MMP-2/tissue inhibitor of metalloproteinases (TIMP)-2 mRNA levels were determined by quantitative real time RT-PCR. Plasma thiobarbituric acid reactive substances concentrations were determined by fluorimetry. Lercanidipine produced antihypertensive effects (201 +/- 5 vs. 163 +/- 7 mm Hg in diabetic rats untreated and treated with lercaniclipine, respectively; P < 0.01) and reversed the impairment in endothelium-dependent vasorelaxation in diabetic rats. Increased MMP-2 and Pro-MMP-2 levels were found in the aortas of diabetic rats (both P < 0.001). Lercandipine attenuated the increases in oxidative stress and in MMP-2 (both P < 0.05). While diabetes induced no major structural changes, it caused a 16-fold increase in the ratio of MMP-2/TIMP-2 mRNA expression, which was completely reversed by lercanidipine (both P < 0.001). These results show that antioxidant and beneficial vascular effects produced by lercanidipine in diabetic rats are associated with reversion of the imbalance in vascular MMP-2MMP-2 expression. (C) 2008 Published by Elsevier B.V.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Exposure of insulin-sensitive tissues to free fatty acids can impair glucose disposal through inhibition of carbohydrate oxidation and glucose transport. However, certain fatty acids and their derivatives can also act as endogenous ligands for peroxisome proliferator-activated receptor gamma (PPARgamma ), a nuclear receptor that positively modulates insulin sensitivity. To clarify the effects of externally delivered fatty acids on glucose uptake in an insulin-responsive cell type, we systematically examined the effects of a range of fatty acids on glucose uptake in 3T3-L1 adipocytes. Of the fatty acids examined, arachidonic acid (AA) had the greatest positive effects, significantly increasing basal and insulin-stimulated glucose uptake by 1.8- and 2-fold, respectively, with effects being maximal at 4 h at which time membrane phospholipid content of AA was markedly increased. The effects of AA were sensitive to the inhibition of protein synthesis but were unrelated to changes in membrane fluidity. AA had no effect on total cellular levels of glucose transporters, but significantly increased levels of GLUT1 and GLUT4 at the plasma membrane. While the effects of AA were insensitive to cyclooxygenase inhibition, the lipoxygenase inhibitor, nordihydroguaiaretic acid, substantially blocked the AA effect on basal glucose uptake. Furthermore, adenoviral expression of a dominant-negative PPARgamma mutant attenuated the AA potentiation of basal glucose uptake. Thus, AA potentiates basal and insulin-stimulated glucose uptake in 3T3-L1 adipocytes by a cyclooxygenase-independent mechanism that increases the levels of both GLUT1 and GLUT4 at the plasma membrane. These effects are at least partly dependent on de novo protein synthesis, an intact lipoxygenase pathway and the activation of PPARgamma with these pathways having a greater role in the absence than in the presence of insulin.