853 resultados para Cyclone Tracy
Resumo:
This study provides a theoretical assessment of the potential bias due to differential lateral transport on multi-proxy studies based on a range of marine microfossils. Microfossils preserved in marine sediments are at the centre of numerous proxies for paleoenvironmental reconstructions. The precision of proxies is based on the assumption that they accurately represent the overlying watercolumn properties and faunas. Here we assess the possibility of a syn-depositional bias in sediment assemblages caused by horizontal drift in the water column, due to differential settling velocities of sedimenting particles based on their shape, size and density, and due to differences in current velocities. Specifically we calculate the post-mortem lateral transport undergone by planktic foraminifera and a range of other biological proxy carriers (diatoms, radiolaria and fecal pellets transporting coccolithophores) in several regions with high current velocities. We find that lateral transport of different planktic foraminiferal species is minimal due to high settling velocities. No significant shape- or size-dependent sorting occurs before reaching the sediment, making planktic foraminiferal ideal proxy carriers. In contrast, diatoms, radiolaria and fecal pellets can be transported up to 500km in some areas. For example in the Agulhas current, transport can lead to differences of up to 2°C in temperature reconstructions between different proxies in response to settling velocities. Therefore, sediment samples are likely to contain different proportions of local and imported particles, decreasing the precision of proxies based on these groups and the accuracy of the temperature reconstruction.
Resumo:
A global compilation of deep-sea isotopic records suggests that Maastrichtian ocean-climate evolution was technically driven. During the early Maastrichtian the Atlantic intermediate-deep ocean was isolated from the Pacific, Indian, and Southern Oceans; deep water formed in the high-latitude North Atlantic and North Pacific. At the early/late Maastrichtian boundary a major reorganization of oceanic circulation patterns occurred, resulting in the development of a thermohaline circulation system similar to that of the modern oceans. A combination of isotopic and plate kinematic data suggests that this event was triggered by the final breaching of tectonic sills in the South Atlantic and the initiation of north-south flow of intermediate and deep water in the Atlantic. The onset of Laramide tectonism during the mid Maastrichtian led to the concurrent draining of major epicontinental seaways. Together, these events caused cooling, increased latitudinal temperature gradients, increased ventilation of the deep ocean, and affected a range of marine biota.
Resumo:
Marine endosymbiotic heterocystous cyanobacteria make unique heterocyst glycolipids (HGs) containing pentose (C5) moieties. Functionally similar HGs with hexose (C6) moieties found in free-living cyanobacteria occur in the sedimentary record, but C5 HGs have not been documented in the natural environment. Here we developed a high performance liquid chromatography multiple reaction monitoring (MRM) mass spectrometry (HPLC-MS2) method specific for trace analysis of long chain C5HGs and applied it to cultures of Rhizosolenia clevei Ostenfeld and its symbiont Richelia intracellularis which were found to contain C5 HGs and no C6 HGs. The method was then applied to suspended particulate matter (SPM) and surface sediment from the Amazon plume region known to harbor marine diatoms carrying heterocystous cyanobacteria as endosymbionts. C5 HGs were detected in both marine SPM and surface sediments, but not in SPM or surface sediment from freshwater settings in the Amazon basin. Rather, the latter contained C6 HGs, established biomarkers for free-living heterocystous cyanobacteria. Our results indicate that the C5 HGs may be potential biomarkers for marine endosymbiotic heterocystous cyanobacteria.
Resumo:
Total carbon and carbonate contents, quantitative carbonate mineralogy, trace metal concentrations, and stable isotope compositions were determined on a suite of samples from the Miocene sections at Sites 1006 and 1007. The Miocene section at Site 1007, located at the toe-of-slope, contains a relatively high proportion of bank-derived components and becomes fully lithified at a depth of ~300 meters below seafloor (mbsf). By contrast, Miocene sediments at Site 1006, situated in Neogene drift deposits in the Straits of Florida and composed primarily of pelagic carbonates, do not become fully lithified until a depth of ~675 mbsf. Diagenetic and compositional contrasts between Sites 1006 and 1007 are reflected in geochemical data derived from sediment samples from each site.
Resumo:
Alkali-basalt clasts in Upper Cretaceous sediments from Site 466 on southern Hess Rise suggest that parts of Hess Rise were constructed by off-ridge volcanic activity. Apparently, tectonic adjustments at Hess Rise occurred during the Late Cretaceous (Campanian-Maastrichtian), when parts of the original volcanic pedestal were uplifted and provided source rocks for the clasts. Synchronous volcanism may have occurred. Causes for the Late Cretaceous tectonic adjustments (and volcanism?) are not known, but they may be related to intraplate movement along the Mendocino Fracture Zone.
(Figure 2) Biological characteristics of anemones Anemonia virids from sites at North Vulvano Island
Resumo:
Increased seawater pCO2, and in turn 'ocean acidification' (OA), is predicted to profoundly impact marine ecosystem diversity and function this century. Much research has already focussed on calcifying reef-forming corals (Class: Anthozoa) that appear particularly susceptible to OA via reduced net calcification. However, here we show that OA-like conditions can simultaneously enhance the ecological success of non-calcifying anthozoans, which not only play key ecological and biogeochemical roles in present day benthic ecosystems but also represent a model organism should calcifying anthozoans exist as less calcified (soft-bodied) forms in future oceans. Increased growth (abundance and size) of the sea anemone (Anemonia viridis) population was observed along a natural CO2 gradient at Vulcano, Italy. Both gross photosynthesis (PG) and respiration (R) increased with pCO2 indicating that the increased growth was, at least in part, fuelled by bottom up (CO2 stimulation) of metabolism. The increase of PG outweighed that of R and the genetic identity of the symbiotic microalgae (Symbiodinium spp.) remained unchanged (type A19) suggesting proximity to the vent site relieved CO2 limitation of the anemones' symbiotic microalgal population. Our observations of enhanced productivity with pCO2, which are consistent with previous reports for some calcifying corals, convey an increase in fitness that may enable non-calcifying anthozoans to thrive in future environments, i.e. higher seawater pCO2. Understanding how CO2-enhanced productivity of non- (and less-) calcifying anthozoans applies more widely to tropical ecosystems is a priority where such organisms can dominate benthic ecosystems, in particular following localized anthropogenic stress.
Resumo:
The biostratigraphic distribution and abundance of lower Oligocene and Miocene to Pleistocene silicoflagellates are documented from Ocean Drilling Program Leg 183 Holes 1138A and 1140A, on the Kerguelen Plateau. The Distephanus speculum speculum forma pseudofibula plexus is found in the upper Miocene in Hole 1138A, but other important biostratigraphic markers are not available. Diversity and abundance of silicoflagellates vary considerably in Hole 1138A, with silicoflagellates more abundant in the Pliocene and Pleistocene and some intervals of the Miocene barren of silicoflagellates or containing only limited numbers of specimens. The silicoflagellates of Hole 1140A include a new skeletal morphology, described here as Distephanus speculum speculum forma cylindrus. Silicoflagellates were generally abundant throughout the lower and middle Miocene in Hole 1140A.
Resumo:
Sixty-five chert, porcellanite, and siliceous-chalk samples from Deep Sea Drilling Project Leg 62 were analyzed by petrography, scanning electron microscopy, analysis by energy-dispersive X-rays, X-ray diffraction, X-ray spectroscopy, and semiquantitative emission spectroscopy. Siliceous rocks occur mainly in chalks, but also in pelagic clay and marlstone at Site 464. Overall, chert probably constitutes less than 5% of the sections and occurs in deposits of Eocene to Barremian ages at sub-bottom depths of 10 to 820 meters. Chert nodules and beds are commonly rimmed by quartz porcellanite; opal-CT-rich rocks are minor in Leg 62 sediments 65 to 108 m.y. old and at sub-bottom depths of 65 to 520 meters. Chert ranges from white to black, shades of gray and brown being most common; yellow-brown and red-brown jaspers occur at Site 464. Seventy-eight percent of the studied cherts contain easily recognizable burrow structures. The youngest chert at Site 463 is a quartz cast of a burrow. Burrow silica maturation is always one step ahead of host-rock silicification. Burrows are commonly loci for initial silicification of the host carbonate. Silicification takes place by volume-f or-volume replacement of carbonate sediment, and more-clay-rich sediment at Site 464. Nannofossils are commonly pseudomorphically replaced by quartz near the edges of chert beds and nodules. Other microfossils, mostly radiolarians and foraminifers, whether in chalk or chert, can be either filled with or replaced by calcite, opal-CT, and (or) quartz. Chemical micro-environments ultimately control the removal, transport, and precipitation of calcite and silica. Two cherts from Site 465 contain sulfate minerals replaced by quartz. Site 465 was never subaerially exposed after sedimentation began, and the formation of the sulfate minerals and their subsequent replacement probably occurred in the marine environment. Several other cherts with odd textures are described in this paper, including (1) a chert breccia cemented by colloform opal-CT and chalcedony, (2) a transition zone between white porcellanite containing opal-CT and quartz and a burrowed brown chert, consisting of radial aggregates of opal-CT with hollow centers, and (3) a chert that consists of silica-replaced calcite pseudospherules interspersed with streaks and circular masses of dense quartz. X-ray-diffraction analyses show that when data from all sites are considered there are poorly defined trends indicating that older cherts have better quartz crystallinity than younger ones, and that opal-CT crystallite size increases and opal-CT cf-spacings decrease with depth of occurrence in the sections. In a general way, depth of burial and the presence of calcite promote the ordering in the opal-CT crystal structure which allows its eventual conversion to quartz. Opal-CT in porcellanites converts to quartz after reaching a minimum d-spacing of 4.07 Å. Quartz/opal-CT ratios and quartz crystallinity vary randomly on a fine scale across four chert beds, but quartz crystallinity increases from the edge to the center of a fifth chert bed; this may indicate maturation of the silica. Twenty-four rocks were analyzed for their major- and minor-element compositions. Many elements in cherts are closely related to major mineral components. The carbonate component is distinguished by high values of CaO, MgO, Mn, Ba, Sr, and (for unknown reasons) Zr. Tuffaceous cherts have high values of K and Al, and commonly Zn, Mo, and Cr. Pure cherts are characterized by high SiO2 and B. High B may be a good indicator of formation of chert in an open marine environment, isolated from volcanic and terrigenous materials.
Resumo:
For years, various indices of seasonal West African precipitation have served as useful predictors of the overall tropical cyclone activity in the Atlantic Ocean. Since the mid-1990s, the correlation unexpectedly deteriorated. In the present study, statistical techniques are developed to describe the nonstationary nature of the correlations between annual measures of Atlantic tropical cyclone activity and three selected West African precipitation indices (namely, western Sahelian precipitation in June-September, central Sahelian precipitation in June-September, and Guinean coastal precipitation in the preceding year's August-November period). The correlations between these parameters are found to vary over the period from 1921 to 2007 on a range of time scales. Additionally, considerable year-to-year variability in the strength of these correlations is documented by selecting subsamples of years with respect to various meteorological factors. Broadly, in years when the environment in the main development region is generally favorable for enhanced tropical cyclogenesis (e.g., when sea surface temperatures are high, when there is relatively little wind shear through the depth of the troposphere, or when the relative vorticity in the midtroposphere is anomalously high), the correlations between indices of West African monsoon precipitation and Atlantic tropical cyclone activity are considerably weaker than in years when the overall conditions in the region are less conducive. Other more remote climate parameters, such as the phase of the Southern Oscillation, are less effective at modulating the nature of these interactions.
Resumo:
This paper constitutes a first detailed and systematic facies and biota description of an isolated carbonate knoll (Pee Shoal) in the Timor Sea (Sahul Shelf, NW Australia). The steep and flat-topped knoll is characterized by a distinct facies zonation comprising (A) soft sediments with scattered debris and scarce sponges, hydrozoans and crinoids (320-210 m water depth), (B) hardground outcrops (step-like banks, vertical cliffs) that are mainly colonized by octocorals and sponges (210-75 m), and (C) the summit region (75-21 m) where the slopes merge gently into the flat-topped summit that is densely colonized by massive and encrusting zooxanthellate corals and the octocoral Heliopora coerulea. In contrast, the sediments recovered from the summit are dominated by the green alga Halimeda, subordinate components are corals, benthic foraminifers, mollusks, and coralline red algae. Thus, the sediments are classified as chlorozoan grain assemblage. However, non-skeletal grains (fecal pellets, ooids) are almost completely absent. This discrepancy between the living biota and the sediment composition could reflect a disruption by the severe tropical cyclone Ingrid that hit the northern Australian shelf in March 2005, just before the sampling for this study took place (September 2005).