970 resultados para Criticality (Nuclear engineering)
Resumo:
Cell death by apoptosis is considered to be irreversible. However, reports have indicated that its reversibility is possible if the cells have not yet reached the "point of no return.'' In order to add new information about this topic, we used cells at different moments of apoptotic process as nuclear donors in somatic cell nuclear transfer (SCNT) in order to test if programmed cell death can be reversed. Adult bovine fibroblasts were treated with 10 mu M of staurosporine (STP) for 3 h and analyzed for phosphatidylserine externalization (Annexin assay) and presence of active caspase-9. Annexin-positive (Anx +) and Caspase-9-positive (Casp-9 +) cells were isolated by FACS and immediately transferred into enucleated in vitro matured bovine oocytes. After STP treatment, 89.9% of cells were Anx + (4.6% in control cells; p < 0.01) and 24.9% were Casp-9 + (2.4% in control cells; p < 0.01). Fusion and cleavage were not affected by the use apoptotic cells (p > 0.05). Also, the use of Anx + cells did not affect blastocyst production compared to control (26.4% vs. 22.9%, respectively; p > 0.05). However, blastocyst formation was affected by the use of Casp-9 + cells (12.3%; p < 0.05). These findings contribute to the idea of that apoptosis is reversible only at early stages. Additionally, we hypothesize that the "point of no return'' for apoptosis may be located around activation of Caspase-9.
Resumo:
The present PhD thesis summarizes the three-years study about the neutronic investigation of a new concept nuclear reactor aiming at the optimization and the sustainable management of nuclear fuel in a possible European scenario. A new generation nuclear reactor for the nuclear reinassance is indeed desired by the actual industrialized world, both for the solution of the energetic question arising from the continuously growing energy demand together with the corresponding reduction of oil availability, and the environment question for a sustainable energy source free from Long Lived Radioisotopes and therefore geological repositories. Among the Generation IV candidate typologies, the Lead Fast Reactor concept has been pursued, being the one top rated in sustainability. The European Lead-cooled SYstem (ELSY) has been at first investigated. The neutronic analysis of the ELSY core has been performed via deterministic analysis by means of the ERANOS code, in order to retrieve a stable configuration for the overall design of the reactor. Further analyses have been carried out by means of the Monte Carlo general purpose transport code MCNP, in order to check the former one and to define an exact model of the system. An innovative system of absorbers has been conceptualized and designed for both the reactivity compensation and regulation of the core due to cycle swing, as well as for safety in order to guarantee the cold shutdown of the system in case of accident. Aiming at the sustainability of nuclear energy, the steady-state nuclear equilibrium has been investigated and generalized into the definition of the ``extended'' equilibrium state. According to this, the Adiabatic Reactor Theory has been developed, together with a New Paradigm for Nuclear Power: in order to design a reactor that does not exchange with the environment anything valuable (thus the term ``adiabatic''), in the sense of both Plutonium and Minor Actinides, it is required indeed to revert the logical design scheme of nuclear cores, starting from the definition of the equilibrium composition of the fuel and submitting to the latter the whole core design. The New Paradigm has been applied then to the core design of an Adiabatic Lead Fast Reactor complying with the ELSY overall system layout. A complete core characterization has been done in order to asses criticality and power flattening; a preliminary evaluation of the main safety parameters has been also done to verify the viability of the system. Burn up calculations have been then performed in order to investigate the operating cycle for the Adiabatic Lead Fast Reactor; the fuel performances have been therefore extracted and inserted in a more general analysis for an European scenario. The present nuclear reactors fleet has been modeled and its evolution simulated by means of the COSI code in order to investigate the materials fluxes to be managed in the European region. Different plausible scenarios have been identified to forecast the evolution of the European nuclear energy production, including the one involving the introduction of Adiabatic Lead Fast Reactors, and compared to better analyze the advantages introduced by the adoption of new concept reactors. At last, since both ELSY and the ALFR represent new concept systems based upon innovative solutions, the neutronic design of a demonstrator reactor has been carried out: such a system is intended to prove the viability of technology to be implemented in the First-of-a-Kind industrial power plant, with the aim at attesting the general strategy to use, to the largest extent. It was chosen then to base the DEMO design upon a compromise between demonstration of developed technology and testing of emerging technology in order to significantly subserve the purpose of reducing uncertainties about construction and licensing, both validating ELSY/ALFR main features and performances, and to qualify numerical codes and tools.
Resumo:
Protein scaffolds that support molecular recognition have multiple applications in biotechnology. Thus, protein frames with robust structural cores but adaptable surface loops are in continued demand. Recently, notable progress has been made in the characterization of Ig domains of intracellular origin--in particular, modular components of the titin myofilament. These Ig belong to the I(intermediate)-type, are remarkably stable, highly soluble and undemanding to produce in the cytoplasm of Escherichia coli. Using the Z1 domain from titin as representative, we show that the I-Ig fold tolerates the drastic diversification of its CD loop, constituting an effective peptide display system. We examine the stability of CD-loop-grafted Z1-peptide chimeras using differential scanning fluorimetry, Fourier transform infrared spectroscopy and nuclear magnetic resonance and demonstrate that the introduction of bioreactive affinity binders in this position does not compromise the structural integrity of the domain. Further, the binding efficiency of the exogenous peptide sequences in Z1 is analyzed using pull-down assays and isothermal titration calorimetry. We show that an internally grafted, affinity FLAG tag is functional within the context of the fold, interacting with the anti-FLAG M2 antibody in solution and in affinity gel. Together, these data reveal the potential of the intracellular Ig scaffold for targeted functionalization.
Resumo:
In this investigation, bromine-77 was produced with a medical cyclotron and imaged with gamma cameras. Br-77 emits a 240 kev photon with a half life of 56 hours. The C-Br bond is stronger than the C-I bond and bromine is not collected in the thyroid. Bromine can be used to label many organic molecules by methods analogous to radioiodination. The only North American source of Br-77 in the 70's and 80's was Los Alamos National Laboratory, but it discontinued production in 1989. In this method, a p,3n reaction on Br-77 produces Kr-77 which decays with a 1.2 hour half life to Br-77. A cyclotron generated 40 MeV proton beam is incident on a nearly saturated NaBr or LiBr solution contained in a copper or titanium target. A cooling chamber through which helium gas is flowed separates the solution from the cyclotron beam line. Helium gas is also flowed through the solution to extract Kr-77 gas. The mixture flows through a nitrogen trap where Kr-77 freezes and is allowed to decay to Br-77. Eight production runs were performed, three with a copper target and five with a titanium target with yields of 40, 104, 180, 679, 1080, 685, 762 and 118 uCi respectively. Gamma ray spectroscopy has shown the product to be very pure, however corrosion has been a major obstacle, causing the premature retirement of the copper target. Phantom and in-vivo rat nuclear images, and an autoradiograph in a rat are presented. The quality of the nuclear scans is reasonable and the autoradiograph reveals high isotope uptake in the renal parenchyma, a more moderate but uniform uptake in pulmonary and hepatic tissue, and low soft tissue uptake. There is no isotope uptake in the brain or the gastric mucosa. ^
Resumo:
Amyotrophic lateral sclerosis (ALS) is a progressive motor neuron disease, fatal within 1 to 5 years after onset of symptoms. About 3 out of 100’000 persons are diagnosed with ALS and there is still no cure available [1, 2]. 95% of all cases occur sporadically and the aetiology remains largely unknown [XXXX]. However, up to now 16 genes were identified to play a role in the development of familial ALS. One of these genes is FUS that encodes for the protein fused in sarcoma/translocated in liposarcoma (FUS/TLS). Mutations in this gene are responsible for some cases of sporadic as well as of inherited ALS [3]. FUS belongs to the family of heterogeneous nuclear ribonucleoproteins and is predicted to be involved in several cellular functions like transcription regulation [4], RNA splicing [5, 6], mRNA transport in neurons [7] and microRNA processing [8]. Aberrant accumulation of mutated FUS has been found in the cytoplasm of motor neurons from ALS patients [9]. The mislocalization of FUS is based on a mutation in the nuclear localization signal of FUS [10]. However, it is still unclear if the cytoplasmic localization of FUS leads to a toxic gain of cytoplasmic function and/or a loss of nuclear function that might be crucial in the course of ALS. The goal of this project is to characterize the impact of ALS-associated FUS mutations on in vitro differentiated motor neurons. To this end, we edit the genome of induced pluripotent stem cells (iPSC) using transcription activator-like effector nucleases (TALENs) [11,12] to create three isogenic cell lines, each carrying an ALS-associated FUS mutation (G156E, R244C and P525L). These iPSC’s will then be differentiated to motor neurons according to a recently establishe protocol (Ref Wichterle) and serve to study alterations in the transcriptome, proteome and metabolome upon the expression of ALS-associated FUS. With this approach, we hope to unravel the molecular mechanism leading to FUS-associated ALS and to provide new insight into the emerging connection between misregulation of RNA metabolism and neurodegeneration, a connection that is currently implied in a variety of additional neurological diseases, including spinocerebellar ataxia 2 (SCA-2), spinal muscular atrophy (SMA), fragile X syndrome, and myotonic dystrophy.
Resumo:
Amyotrophic lateral sclerosis (ALS) is a progressive motor neuron disease, fatal within 1 to 5 years after onset of symptoms. About 3 out of 100’000 persons are diagnosed with ALS and there is still no cure available [1, 2]. 95% of all cases occur sporadically and the aetiology remains largely unknown [3]. However, up to now 16 genes were identified to play a role in the development of familial ALS. One of these genes is FUS that encodes for the protein fused in sarcoma (FUS). Mutations in this gene are responsible for some cases of sporadic as well as of inherited ALS [4]. FUS belongs to the family of heterogeneous nuclear ribonucleoproteins and is predicted to be involved in several cellular functions like transcription regulation, RNA splicing, mRNA transport in neurons and microRNA processing [5] Aberrant accumulation of mutated FUS has been found in the cytoplasm of motor neurons from ALS patients [6]. The mislocalization of FUS is based on a mutation in the nuclear localization signal of FUS [7]. However, it is still unclear if the cytoplasmic localization of FUS leads to a toxic gain of cytoplasmic function and/or a loss of nuclear function that might be crucial in the course of ALS. The goal of this project is to characterize the impact of ALS-associated FUS mutations on in vitro differentiated motor neurons. To this end, we edit the genome of induced pluripotent stem cells (iPSC) using transcription activator-like effector nucleases (TALENs) [8,9] to create three isogenic cell lines, each carrying an ALS-associated FUS mutation (G156E, R244C and P525L). These iPSC’s will then be differentiated to motor neurons according to a recently established protocol [10] and serve to study alterations in the transcriptome, proteome and metabolome upon the expression of ALS-associated FUS. With this approach, we hope to unravel the molecular mechanism leading to FUS-associated ALS and to provide new insight into the emerging connection between misregulation of RNA metabolism and neurodegeneration, a connection that is currently implied in a variety of additional neurological diseases, including spinocerebellar ataxia 2 (SCA-2), spinal muscular atrophy (SMA), fragile X syndrome, and myotonic dystrophy. [1] Cleveland, D.W. et al. (2001) Nat Rev Neurosci 2(11): 806-819 [2] Sathasivam, S. (2010) Singapore Med J 51(5): 367-372 [3] Schymick, J.C. et al. (2007) Hum Mol Genet Vol 16: 233-242 [4] Pratt, A.J. et al. (2012). Degener Neurol Neuromuscul Dis 2012(2): 1-14 [5] Lagier-Tourenne, C. Hum Mol Genet, 2010. 19(R1): p. R46-64 [6] Mochizuki, Y. et al. (2012) J Neurol Sci 323(1-2): 85-92 [7] Dormann, D. et al. (2010) EMBO J 29(16): 2841-2857 [8] Hockemeyer, D. et al. (2011) Nat Biotech 29(8): 731-734 [9] Joung, J.K. and J.D. Sander (2013) Nat Rev Mol Cell Biol 14(1): 49-55 [10]Amoroso, M.W. et al. (2013) J Neurosci 33(2): 574-586.
Resumo:
This volume represents the proceedings of the Sixteenth Annual Biochemical Engineering Symposium held at Kansas State University on April 26, 1986. Some of the papers describe the progress of ongoing projects, and others contain the results of completed projects. Only brief summaries are given of many of the papers that will be published in full elsewhere. ContentsEnd-Product Inhibition of the Acetone-Butanol Fermentation—Bob Kuhn, Colorado State University Effect of Multiple Substrates in Ethanal Fermentations from Cheese Whey—C.J. Wang, University of Missouri Extraction and Fermentation of Ensiled Sweet Sorghum—Karl Noah, Colorado State University Removal of Nucleic Acids from Bakers' Yeast—Richard M. Cordes, Iowa State University Modeling the Effects of Plasmid Replication and Product Repression on the Growth Rate of Recombinant Bacteria—William E. Bentley, University of Colorado Indirect Estimates of Cell Concentrations in Mass Cultivation of Bacterial Cells—Andrew Fisher, University of Missouri A Mathematical Model for Liquid Recirculation in Airlift Columns—C.H.Lee, Kansas State University Characterization of Imperfect Mixing of Batch Reactors by Two Compartment Model—Peter Sohn, University of Missouri First Order Breakage Model for the Degradation of Pullalan in the Batch Fermentor—Stephen A. Milligan, Kansas State University Synthesis and Nuclear Magnetic Resonance of 13C-Labeled Amylopectin and Maltooligosaccharides—Bernard Y. Tao, Iowa State University Preparation of Fungal Starter Culture in Gas Fluidized Bed Reactor—Pal Mihaltz, Colorado State University Yeast Flocculation and Sedimentation—David Szlag, University of Colorado Protein Enrichment of Extrusion Cooked Corn by Solid Substrate Fermentation—Lucas Alvarez-Martinez, Colorado State University Optimum Design of a Hollow Fiber Mammalian Cell Reactor—Thomas Chresand, Colorado State University Gas Chromatography and Nuclear Magnetic Resonance of Trifluoroacetylated Carbohydrates—Steven T. Summerfelt, Iowa State University Kinetic and Bioenergetic Considerations for Modeling Photosynthetic Microbial P~ocesses in Producing Biomass and Treating Wastewater—H. Y. Lee, Kansas State University Mathematical Modeling and Simulation of Bicarbonate-Limited Photsynthetic Growth in Continuous Culture—Craig Curless, Kansas State University Data Acquisition and Control of a Rotary Drum Solid State Fermentor—Mnasria A. Habib, Colorado State University Biodegradation of 2,4-Dichlorophenoxyacetic Acid (2,4-D)—Greg Sinton, Kansas State University
Resumo:
Determining as accurate as possible spent nuclear fuel isotopic content is gaining importance due to its safety and economic implications. Since nowadays higher burn ups are achievable through increasing initial enrichments, more efficient burn up strategies within the reactor cores and the extension of the irradiation periods, establishing and improving computation methodologies is mandatory in order to carry out reliable criticality and isotopic prediction calculations. Several codes (WIMSD5, SERPENT 1.1.7, SCALE 6.0, MONTEBURNS 2.0 and MCNP-ACAB) and methodologies are tested here and compared to consolidated benchmarks (OECD/NEA pin cell moderated with light water) with the purpose of validating them and reviewing the state of the isotopic prediction capabilities. These preliminary comparisons will suggest what can be generally expected of these codes when applied to real problems. In the present paper, SCALE 6.0 and MONTEBURNS 2.0 are used to model the same reported geometries, material compositions and burn up history of the Spanish Van de llós II reactor cycles 7-11 and to reproduce measured isotopies after irradiation and decay times. We analyze comparisons between measurements and each code results for several grades of geometrical modelization detail, using different libraries and cross-section treatment methodologies. The power and flux normalization method implemented in MONTEBURNS 2.0 is discussed and a new normalization strategy is developed to deal with the selected and similar problems, further options are included to reproduce temperature distributions of the materials within the fuel assemblies and it is introduced a new code to automate series of simulations and manage material information between them. In order to have a realistic confidence level in the prediction of spent fuel isotopic content, we have estimated uncertainties using our MCNP-ACAB system. This depletion code, which combines the neutron transport code MCNP and the inventory code ACAB, propagates the uncertainties in the nuclide inventory assessing the potential impact of uncertainties in the basic nuclear data: cross-section, decay data and fission yields
Resumo:
The uncertainty propagation in fuel cycle calculations due to Nuclear Data (ND) is a important important issue for : issue for : • Present fuel cycles (e.g. high burnup fuel programme) • New fuel cycles designs (e.g. fast breeder reactors and ADS) Different error propagation techniques can be used: • Sensitivity analysis • Response Response Surface Method Surface Method • Monte Carlo technique Then, p p , , in this paper, it is assessed the imp y pact of ND uncertainties on the decay heat and radiotoxicity in two applications: • Fission Pulse Decay ( y Heat calculation (FPDH) • Conceptual design of European Facility for Industrial Transmutation (EFIT)
Resumo:
The accurate prediction of the spent nuclear fuel content is essential for its safe and optimized transportation, storage and management. This isotopic evolution can be predicted using powerful codes and methodologies throughout irradiation as well as cooling time periods. However, in order to have a realistic confidence level in the prediction of spent fuel isotopic content, it is desirable to determine how uncertainties affect isotopic prediction calculations by quantifying their associated uncertainties.
Resumo:
This work is based on the prototype High Engineering Test Reactor (HTTR) of the Japan Agency of Energy Atomic (JAEA). Its objective is to describe an adequate deterministic model to be used in the assessment of its design safety margins via damage domains. The concept of damage domain is defined and it is shown its relevance in the ongoing effort to apply dynamic risk assessment methods and tools based on the Theory of Stimulated Dynamics (TSD). To illustrate, we present results of an abnormal control rod (CR) withdrawal during subcritical condition and its comparison with results obtained by JAEA. No attempt is made yet to actually assess the detailed scenarios, rather to show how the approach may handle events of its kind
Resumo:
Modern embedded applications typically integrate a multitude of functionalities with potentially different criticality levels into a single system. Without appropriate preconditions, the integration of mixed-criticality subsystems can lead to a significant and potentially unacceptable increase of engineering and certification costs. A promising solution is to incorporate mechanisms that establish multiple partitions with strict temporal and spatial separation between the individual partitions. In this approach, subsystems with different levels of criticality can be placed in different partitions and can be verified and validated in isolation. The MultiPARTES FP7 project aims at supporting mixed- criticality integration for embedded systems based on virtualization techniques for heterogeneous multicore processors. A major outcome of the project is the MultiPARTES XtratuM, an open source hypervisor designed as a generic virtualization layer for heterogeneous multicore. MultiPARTES evaluates the developed technology through selected use cases from the offshore wind power, space, visual surveillance, and automotive domains. The impact of MultiPARTES on the targeted domains will be also discussed. In a number of ongoing research initiatives (e.g., RECOMP, ARAMIS, MultiPARTES, CERTAINTY) mixed-criticality integration is considered in multicore processors. Key challenges are the combination of software virtualization and hardware segregation and the extension of partitioning mechanisms to jointly address significant non-functional requirements (e.g., time, energy and power budgets, adaptivity, reliability, safety, security, volume, weight, etc.) along with development and certification methodology.
Resumo:
In the framework of the OECD/NEA project on Benchmark for Uncertainty Analysis in Modeling (UAM) for Design, Operation, and Safety Analysis of LWRs, several approaches and codes are being used to deal with the exercises proposed in Phase I, “Specifications and Support Data for Neutronics Cases.” At UPM, our research group treats these exercises with sensitivity calculations and the “sandwich formula” to propagate cross-section uncertainties. Two different codes are employed to calculate the sensitivity coefficients of to cross sections in criticality calculations: MCNPX-2.7e and SCALE-6.1. The former uses the Differential Operator Technique and the latter uses the Adjoint-Weighted Technique. In this paper, the main results for exercise I-2 “Lattice Physics” are presented for the criticality calculations of PWR. These criticality calculations are done for a TMI fuel assembly at four different states: HZP-Unrodded, HZP-Rodded, HFP-Unrodded, and HFP-Rodded. The results of the two different codes above are presented and compared. The comparison proves a good agreement between SCALE-6.1 and MCNPX-2.7e in uncertainty that comes from the sensitivity coefficients calculated by both codes. Differences are found when the sensitivity profiles are analysed, but they do not lead to differences in the uncertainty.
Resumo:
The present work is a preliminary study to settle the optimum experimental conditions and data processing for accomplishing the strategies established by the Action Plan for the EU olive oil sector. The objectives of the work were: a) to monitor the evolution of extra virgin olive oil exposed to indirect solar light in transparent glass bottles during four months; b) to identify spectral differences between edible and lampant virgin olive oil by applying high resolution Nuclear Magnetic Resonance (HR-NMR) Spectroscopy. Pr esent study could contribute to determine the date of minimum storage, their optimum conditions, and to properly characterize olive oil.
Resumo:
This paper presents an assessment analysis of damage domains of the 30 MWth prototype High-Temperature Engineering Test Reactor (HTTR) operated by the Japan Atomic Energy Agency (JAEA). For this purpose, an in-house deterministic risk assessment computational tool was developed based on the Theory of Stimulated Dynamics (TSD). To illustrate the methodology and applicability of the developed modelling approach, assessment results of a control rod (CR) withdrawal accident during subcritical conditions are presented and compared with those obtained by the JAEA.