956 resultados para Cortex Preservation


Relevância:

20.00% 20.00%

Publicador:

Resumo:

The piriform cortex (PC) is highly prone to epileptogenesis, particularly in immature animals, where decreased muscarinic modulation of PC intrinsic fibre excitatory neurotransmission is implicated as a likely cause. However, whether higher levels of acetylcholine (ACh) release occur in immature vs. adult PC remains unclear. We investigated this using in vitro extracellular electrophysiological recording techniques. Intrinsic fibre-evoked extracellular field potentials (EFPs) were recorded from layers II to III in PC brain slices prepared from immature (P14-18) and adult (P>40) rats. Adult and immature PC EFPs were suppressed by eserine (1muM) or neostigmine (1muM) application, with a greater suppression in immature ( approximately 40%) than adult ( approximately 30%) slices. Subsequent application of atropine (1muM) reversed EFP suppression, producing supranormal ( approximately 12%) recovery in adult slices, suggesting that suppression was solely muscarinic ACh receptor-mediated and that some 'basal' cholinergic 'tone' was present. Conversely, atropine only partially reversed anticholinesterase effects in immature slices, suggesting the presence of additional non-muscarinic modulation. Accordingly, nicotine (50muM) caused immature field suppression ( approximately 30%) that was further enhanced by neostigmine, whereas it had no effect on adult EFPs. Unlike atropine, nicotinic antagonists, mecamylamine and methyllycaconitine, induced immature supranormal field recovery ( approximately 20%) following anticholinesterase-induced suppression (with no effect on adult slices), confirming that basal cholinergic 'tone' was also present. We suggest that nicotinic inhibitory cholinergic modulation occurs in the immature rat PC intrinsic excitatory fibre system, possibly to complement the existing, weak muscarinic modulation, and could be another important developmentally regulated system governing immature PC susceptibility towards epileptogenesis.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Suppression of depolarizing postsynaptic potentials and isolated GABA-A receptor-mediated fast inhibitory postsynaptic potentials by the muscarinic acetylcholine receptor agonist, oxotremorine-M (10 microM), was investigated in adult and immature (P14-P30) rat piriform cortical (PC) slices using intracellular recording. Depolarizing postsynaptic potentials evoked by layers II-III stimulation underwent concentration-dependent inhibition in oxotremorine-M that was most likely presynaptic and M2 muscarinic acetylcholine receptor-mediated in immature, but M1-mediated in adult (P40-P80) slices; percentage inhibition was smaller in immature than in adult piriform cortex. In contrast, compared with adults, layer Ia-evoked depolarizing postsynaptic potentials in immature piriform cortex slices in oxotremorine-M, showed a prolonged multiphasic depolarization with superimposed fast transients and spikes, and an increased 'all-or-nothing' character. Isolated N-methyl-d-aspartate receptor-mediated layer Ia depolarizing postsynaptic potentials (although significantly larger in immature slices) were however, unaffected by oxotremorine-M, but blocked by dl-2-amino-5-phosphonovaleric acid. Fast inhibitory postsynaptic potentials evoked by layer Ib or layers II-III-fiber stimulation in immature slices were significantly smaller than in adults, despite similar estimated mean reversal potentials ( approximately -69 and -70 mV respectively). In oxotremorine-M, only layer Ib-fast inhibitory postsynaptic potentials were suppressed; suppression was again most likely presynaptic M2-mediated in immature slices, but M1-mediated in adults. The degree of fast inhibitory postsynaptic potential suppression was however, greater in immature than in adult piriform cortex. Our results demonstrate some important physiological and pharmacological differences between excitatory and inhibitory synaptic systems in adult and immature piriform cortex that could contribute toward the increased susceptibility of this region to muscarinic agonist-induced epileptiform activity in immature brain slices.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The characteristics of muscarinic acetylcholine receptor agonist-induced epileptiform bursting seen in immature rat piriform cortex slices in vitro were further investigated using intracellular recording, with particular focus on its postnatal age-dependence (P+14-P+30), pharmacology, site(s) of origin and the likely contribution of the muscarinic acetylcholine receptor agonist-induced post-stimulus slow afterdepolarization and gap junction functionality toward its generation. The muscarinic agonist, oxotremorine-M (10 microM), induced rhythmic bursting only in immature piriform cortex slices; however, paroxysmal depolarizing shift amplitude, burst duration and burst incidence were inversely related to postnatal age. No significant age-dependent changes in neuronal membrane properties or postsynaptic muscarinic responsiveness accounted for this decline. Burst incidence was higher when recorded in anterior and posterior regions of the immature piriform cortex. In adult and immature neurones, oxotremorine-M effects were abolished by M1-, but not M2-muscarinic acetylcholine receptor-selective antagonists. Rostrocaudal lesions, between piriform cortex layers I and II, or layer III and endopiriform nucleus in adult or immature slices did not influence oxotremorine-M effects; however, the slow afterdepolarization in adult (but not immature) lesioned slices was abolished. Gap junction blockers (carbenoxolone or octanol) disrupted muscarinic bursting and diminished the slow afterdepolarization in immature slices, suggesting that gap junction connectivity was important for bursting. Our data show that neural networks within layers II-III function as primary oscillatory circuits for burst initiation in immature rat piriform cortex during persistent muscarinic receptor activation. Furthermore, we propose that muscarinic slow afterdepolarization induction and gap junction communication could contribute towards the increased epileptiform susceptibility of this brain area.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Cannabis is a potential treatment for epilepsy, although the few human studies supporting this use have proved inconclusive. Previously, we showed that a standardized cannabis extract (SCE), isolated Delta(9)-tetrahydrocannabinol (Delta(9)-THC), and even Delta(9)-THC-free SCE inhibited muscarinic agonist-induced epileptiform bursting in rat olfactory cortical brain slices, acting via CB1 receptors. The present work demonstrates that although Delta(9)-THC (1microM) significantly depressed evoked depolarizing postsynaptic potentials (PSPs) in rat olfactory cortex neurones, both SCE and Delta(9)-THC-free SCE significantly potentiated evoked PSPs (all results were fully reversed by the CB1 receptor antagonist SR141716A, 1microM); interestingly, the potentiation by Delta(9)-THC-free SCE was greater than that produced by SCE. On comparing the effects of Delta(9)-THC-free SCE upon evoked PSPs and artificial PSPs (aPSPs; evoked electrotonically following brief intracellular current injection), PSPs were enhanced, whereas aPSPs were unaffected, suggesting that the effect was not due to changes in background input resistance. Similar recordings made using CB1 receptor-deficient knockout mice (CB1(-/-)) and wild-type littermate controls revealed cannabinoid or extract-induced changes in membrane resistance, cell excitability and synaptic transmission in wild-type mice that were similar to those seen in rat neurones, but no effect on these properties were seen in CB1(-/-) cells. It appears that the unknown extract constituent(s) effects over-rode the suppressive effects of Delta(9)-THC on excitatory neurotransmitter release, which may explain some patients' preference for herbal cannabis rather than isolated Delta(9)-THC (due to attenuation of some of the central Delta(9)-THC side effects) and possibly account for the rare incidence of seizures in some individuals taking cannabis recreationally

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A spatangoid-produced ichnofabric is described from the Miocene Bateig Limestone, SE Spain. This ichnofabric is characterized by the dominant presence of large meniscate burrows (Bichordites) produced by irregular echinoids. This constitutes an unusual mode of occurrence for spatangoid bioturbation, as their traces are most typically preserved in bases and tops of sandstone event beds. In fact, despite their important role as burrowers in modern settings (that can be extended back to the Early Cretaceous based on their body fossil record), spatangoid trace fossils (Scolicia and Bichordites) are comparatively rare. Several factors play an important role in their preservation: mechanism of burrowing, sediment characteristics, early diagenesis and presence/absence of deep-tier burrowers. Spatangoid-produced ichnofabrics, such as those from the Bateig Limestone, characterize depositional settings with intermittent deposition of event beds where there is an absence of deeper-tier bioturbation. (C) 2008 Elsevier B.V. All rights reserved

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Mineralised organic remains (including apple pips and cereal grains) collected during the ongoing excavations of Insula IX at the Roman town of Silchester, Hampshire have been analysed by a combination of SEM-EDX, powder XRD and IR spectroscopy. The experiments included mapping experiments using spatially resolved versions of each technique. IR and powder XRD mapping have been carried out utilising the synchrotron source at The Daresbury Laboratory oil stations 11.1 and 9.6. It is concluded that these samples are preserved by rapid mineralisation in the carbonate-substituted calcium phosphate mineral, dahllite. The rapid mineralisation leads to excellent preservation of the samples and a small crystal size. The value of IR spectroscopy in studying materials like this where the crystal size is small is demonstrated. A comparison is made between the excellent preservation seen in this context and the much poorer preservation of mineralised remains seen in Context 5276 or Cesspit 5251. Comments on the possible mechanism of mineralisation of these samples are made. (C) 2008 Elsevier B.V.. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Here we show inverse fMRI activation patterns in amygdala and medial prefrontal cortex (mPFC) depending upon whether subjects interpreted surprised facial expressions positively or negatively. More negative interpretations of surprised faces were associated with greater signal changes in the right ventral amygdala, while more positive interpretations were associated with greater signal changes in the ventral mPFC. Accordingly, signal change within these two areas was inversely correlated. Thus, individual differences in the judgment of surprised faces are related to a systematic inverse relationship between amygdala and mPFC activity, a circuitry that the animal literature suggests is critical to the assessment of stimuli that predict potential positive vs negative outcomes.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The degree to which perceived controllability alters the way a stressor is experienced varies greatly among individuals. We used functional magnetic resonance imaging to examine the neural activation associated with individual differences in the impact of perceived controllability on self-reported pain perception. Subjects with greater activation in response to uncontrollable (UC) rather than controllable (C) pain in the pregenual anterior cingulate cortex (pACC), periaqueductal gray (PAG), and posterior insula/SII reported higher levels of pain during the UC versus C conditions. Conversely, subjects with greater activation in the ventral lateral prefrontal cortex (VLPFC) in anticipation of pain in the UC versus C conditions reported less pain in response to UC versus C pain. Activation in the VLPFC was significantly correlated with the acceptance and denial subscales of the COPE inventory [Carver, C. S., Scheier, M. F., & Weintraub, J. K. Assessing coping strategies: A theoretically based approach. Journal of Personality and Social Psychology, 56, 267–283, 1989], supporting the interpretation that this anticipatory activation was associated with an attempt to cope with the emotional impact of uncontrollable pain. A regression model containing the two prefrontal clusters (VLPFC and pACC) predicted 64% of the variance in pain rating difference, with activation in the two additional regions (PAG and insula/SII) predicting almost no additional variance. In addition to supporting the conclusion that the impact of perceived controllability on pain perception varies highly between individuals, these findings suggest that these effects are primarily top-down, driven by processes in regions of the prefrontal cortex previously associated with cognitive modulation of pain and emotion regulation.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Among younger adults, the ability to willfully regulate negative affect, enabling effective responses to stressful experiences, engages regions of prefrontal cortex (PFC) and the amygdala. Because regions of PFC and the amygdala are known to influence the hypothalamic-pituitary-adrenal axis, here we test whether PFC and amygdala responses during emotion regulation predict the diurnal pattern of salivary cortisol secretion. We also test whether PFC and amygdala regions are engaged during emotion regulation in older (62- to 64-year-old) rather than younger individuals. We measured brain activity using functional magnetic resonance imaging as participants regulated (increased or decreased) their affective responses or attended to negative picture stimuli. We also collected saliva samples for 1 week at home for cortisol assay. Consistent with previous work in younger samples, increasing negative affect resulted in ventral lateral, dorsolateral, and dorsomedial regions of PFC and amygdala activation. In contrast to previous work, decreasing negative affect did not produce the predicted robust pattern of higher PFC and lower amygdala activation. Individuals demonstrating the predicted effect (decrease s attend in the amygdala), however, exhibited higher signal in ventromedial prefrontal cortex (VMPFC) for the same contrast. Furthermore, participants displaying higher VMPFC and lower amygdala signal when decreasing compared with the attention control condition evidenced steeper, more normative declines in cortisol over the course of the day. Individual differences yielded the predicted link between brain function while reducing negative affect in the laboratory and diurnal regulation of endocrine activity in the home environment.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Using functional magnetic resonance imaging, we examined whether individual differences in amygdala activation in response to negative relative to neutral information are related to differences in the speed with which such information is evaluated, the extent to which such differences are associated with medial prefrontal cortex function, and their relationship with measures of trait anxiety and psychological well-being (PWB). Results indicated that faster judgments of negative relative to neutral information were associated with increased left and right amygdala activation. In the prefrontal cortex, faster judgment time was associated with relative decreased activation in a cluster in the ventral anterior cingulate cortex (ACC, BA 24). Furthermore, people who were slower to evaluate negative versus neutral information reported higher PWB. Importantly, higher PWB was strongly associated with increased activation in the ventral ACC for negative relative to neutral information. Individual differences in trait anxiety did not predict variation in judgment time or in amygdala or ventral ACC activity. These findings suggest that people high in PWB effectively recruit the ventral ACC when confronted with potentially aversive stimuli, manifest reduced activity in subcortical regions such as the amygdala, and appraise such information as less salient as reflected in slower evaluative speed.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Purpose: Acute in vitro brain slice models are commonly used to study epileptiform seizure generation and to test anti-epileptic drug action. Seizure-like activity can be readily induced by manipulating external ionic concentrations or by adding convulsant agents to the bathing medium. We previously showed that epileptiform bursting was induced in slices of immature (P14–28) rat piriform cortex (PC) by applying oxotremorine-M, a potent muscarinic receptor agonist. Here, we examined whether raising levels of endogenous acetylcholine (ACh) by exposure to anticholinesterases, could also induce epileptiform events in immature (P12–14) or early postnatal (P7–9) rat PC brain slices. Methods: The effects of anticholinesterases were investigated in rat PC neurons using both extracellular MEA (P7–9 slices) and intracellular (P12–14 slices) recording methods. Results: In P7–9 slices, eserine (20 μM) or neostigmine (20 μM) induced low amplitude, low frequency bursting activity in all three PC cell layers (I–III), particularly layer III, where neuronal muscarinic responsiveness is known to predominate. In P12–14 neurons, neostigmine produced a slow depolarization together with an increase in input resistance and evoked cell firing. Depolarizing postsynaptic potentials evoked by intrinsic fibre stimulation were selectively depressed although spontaneous bursting was not observed. Neostigmine effects were blocked by atropine (1 μM), confirming their muscarinic nature. We conclude that elevation of endogenous ACh by anticholinesterases can induce bursting in early postnatal PC brain slices, further highlighting the epileptogenic capacity of this brain region. However, this tendency declines with further development, possibly as local inhibitory circuit mechanisms become more dominant.

Relevância:

20.00% 20.00%

Publicador:

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A total of 133 samples (53 fermented unprocessed, 19 fermented processed. 62 urea-treated processed) of whole crop wheat (WCW) and 16 samples (five fermented unprocessed, six fermented processed, five urea-treated processed) of whole crop barley (WCB) were collected from commercial farms over two consecutive years (2003/2004 and 2004/2005). Disruption of the maize grains to increase starch availability was achieved at the point of harvest by processors fitted to the forage harvesters. All samples were subjected to laboratory analysis whilst 50 of the samples (24 front Year 1, 26 front Year 2 all WCW except four WCB in Year 2) were subjected to in vivo digestibility and energy value measurements using mature wether sheep. Urea-treated WCW had higher (P<0.05) pH, and dry matter (DM) and crude protein contents and lower concentrations of fermentation products than fermented WCW. Starch was generally lower in fermented, unprocessed WCW and no effect of crop maturity at harvest (as indicated by DM content) on starch concentrations was seen. Urea-treated WCW had higher (P<0.05) in vivo digestible organic matter contents in the DM (DOMD) in Year 1 although this was not recorded in Year 2. There was a close relationship between the digestibility values of organic matter and gross energy thus aiding the use of DOMD to predict metabolisable energy (ME) content. A wide range of ME values was observed (WCW. 8.7-11.8 MJ/kg DM; WCB 7.9-11.2 MJ/kg DM) with the overall ME/DOMD ratio (ME = 0.0156 DOMD) in line With Studies in other forages. There was no evidence that a separate ME/DOMD relationship was needed for WCB which is helpful for practical application. This ratio and other parameters were affected by year of harvest (P<0.05) highlighting the influence of environmental and Other undefined factors. The variability in the composition and nutritive value of WCW and WCB highlights the need for reliable and accurate evaluation methods to be available to assess the Value of these forages before they are included in diets for dairy cows. (C) 2008 Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Polarized epithelial cells are responsible for the vectorial transport of solutes and have a key role in maintaining body fluid and electrolyte homeostasis. Such cells contain structurally and functionally distinct plasma membrane domains. Brush border and basolateral membranes of renal and intestinal epithelial cells can be separated using a number of different separation techniques, which allow their different transport functions and receptor expressions to be studied. In this communication, we report a proteomic analysis of these two membrane segments, apical and basolateral, obtained from the rat renal cortex isolated by two different methods: differential centrifugation and free-flow electrophoresis. The study was aimed at assessing the nature of the major proteins isolated by these two separation techniques. Two analytical strategies were used: separation by sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) at the protein level or by cation-exchange high-performance liquid chromatography (HPLC) after proteolysis (i.e., at the peptide level). Proteolytic peptides derived from the proteins present in gel pieces or from HPLC fractions after proteolysis were sequenced by on-line liquid chromatography-tandem mass spectrometry (LC-MS/MS). Several hundred proteins were identified in each membrane section. In addition to proteins known to be located at the apical and basolateral membranes, several novel proteins were also identified. In particular, a number of proteins with putative roles in signal transduction were identified in both membranes. To our knowledge, this is the first reported study to try and characterize the membrane proteome of polarized epithelial cells and to provide a data set of the most abundant proteins present in renal proximal tubule cell membranes.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Polarized epithelial cells are responsible for the vectorial transport of solutes and have a key role in maintaining body fluid and electrolyte homeostasis. Such cells contain structurally and functionally distinct plasma membrane domains. Brush border and basolateral membranes of renal and intestinal epithelial cells can be separated using a number of different separation techniques, which allow their different transport functions and receptor expressions to be studied. In this communication, we report a proteomic analysis of these two membrane segments, apical and basolateral, obtained from the rat renal cortex isolated by two different methods: differential centrifugation and free-flow electrophoresis. The study was aimed at assessing the nature of the major proteins isolated by these two separation techniques. Two analytical strategies were used: separation by sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) at the protein level or by cation-exchange high-performance liquid chromatography (HPLC) after proteolysis (i.e., at the peptide level). Proteolytic peptides derived from the proteins present in gel pieces or from HPLC fractions after proteolysis were sequenced by on-line liquid chromatography-tandem mass spectrometry (LC-MS/MS). Several hundred proteins were identified in each membrane section. In addition to proteins known to be located at the apical and basolateral membranes, several novel proteins were also identified. In particular, a number of proteins with putative roles in signal transduction were identified in both membranes. To our knowledge, this is the first reported study to try and characterize the membrane proteome of polarized epithelial cells and to provide a data set of the most abundant proteins present in renal proximal tubule cell membranes.