434 resultados para Core–shell nanostructure
Resumo:
The reinforcing effect of inorganic fullerene-like tungsten disulfide (IF-WS2) nanoparticles in two different polymer matrices, isotactic polypropylene (iPP) and polyphenylene sulfide (PPS), has been investigated by means of dynamic depth-sensing indentation. The hardness and elastic modulus enhancement upon filler addition is analyzed in terms of two main contributions: changes in the polymer matrix nanostructure and intrinsic properties of the filler including matrix-particle load transfer. It is found that the latter mainly determines the overall mechanical improvement, whereas the nanostructural changes induced in the polymer matrix only contribute to a minor extent. Important differences are suggested between the mechanisms of deformation in the two nanocomposites, resulting in a moderate mechanical enhancement in case of iPP (20% for a filler loading of 1%), and a remarkable hardness increase in case of PPS (60% for the same filler content). The nature of the polymer amorphous phase, whether in the glassy or rubbery state, seems to play here an important role. Finally, nanoindentation and dynamic mechanical analysis measurements are compared and discussed in terms of the different directionality of the stresses applied.
Resumo:
The leaf cuticular ultrastructure of some plant species has been examined by transmission electron microscopy (TEM) in only few studies. Attending to the different cuticle layers and inner structure, plant cuticles have been grouped into six general morphological types. With the aim of critically examining the effect of cuticle isolation and preparation for TEM analysis on cuticular ultrastructure, adaxial leaf cuticles of blue-gum eucalypt, grey poplar, and European pear were assessed, following a membrane science approach. The embedding and staining protocols affected the ultrastructure of the cuticles analysed. The solubility parameter, surface tension, and contact angles with water of pure Spurr's and LR-White resins were within a similar range. Differences were however estimated for resin : solvent mixtures, since Spurr’s resin is combined with acetone and LR-White resin is mixed with ethanol. Given the composite hydrophilic and lipophilic nature of plant cuticles, the particular TEM tissue embedding and staining procedures employed may affect sample ultrastructure and the interpretation of the results in physicochemical and biological terms. It is concluded that tissue preparation procedures may be optimised to facilitate the observation of the micro- and nanostructure of cuticular layers and components with different degrees of polarity and hydrophobicity.
Resumo:
We report on an experimental study on the spin-waves relaxation rate in two series of nanodisks of diameter ϕ=300 , 500, and 700 nm, patterned out of two systems: a 20 nm thick yttrium iron garnet (YIG) film grown by pulsed laser deposition either bare or covered by 13 nm of Pt. Using a magnetic resonance force microscope, we measure precisely the ferromagnetic resonance linewidth of each individual YIG and YIG|Pt nanodisks. We find that the linewidth in the nanostructure is sensibly smaller than the one measured in the extended film. Analysis of the frequency dependence of the spectral linewidth indicates that the improvement is principally due to the suppression of the inhomogeneous part of the broadening due to geometrical confinement, suggesting that only the homogeneous broadening contributes to the linewidth of the nanostructure. For the bare YIG nano-disks, the broadening is associated to a damping constant α=4 × 10−4 . A threefold increase of the linewidth is observed for the series with Pt cap layer, attributed to the spin pumping effect. The measured enhancement allows to extract the spin mixing conductance found to be G↑↓=1.55 × 1014 Ω−1 m−2 for our YIG(20nm)|Pt interface, thus opening large opportunities for the design of YIG based nanostructures with optimized magnetic losses.
Resumo:
A detailed analysis of the impact of illumination on the electrical response of In0.5Ga0.5As surface nanostructures is carried out as a function of different relative humidity conditions. The importance of the surface-to-volume ratio for sensing applications is once more highlighted. From dark-to-photo conditions, the sheet resistance (SR) of a three-dimensional In0.5Ga0.5As nanostructure decays two orders of magnitude compared with that of a two-dimensional nanostructure. The electrical response is found to be vulnerable to the energy of the incident light and the external conditions. Illuminating with high energy light translates into an SR reduction of one order of magnitude under humid atmospheres, whereas it remains nearly unchanged under dry environments. Conversely, lighting with energy below the bulk energy bandgap, shows a negligible effect on the electrical properties regardless the local moisture. Both illumination and humidity are therefore needed for sensing. Photoexcited carriers can only contribute to conductivity if surface states are inactive due to water physisorption. The strong dependence of the electrical response on the environment makes these nanostructures very suitable for the development of highly sensitive and efficient sensing devices.
Resumo:
Nanomedicine is a new branch of medicine, based on the potentiality and intrinsic properties of nanomaterials. Indeed, the nanomaterials ( i.e. the materials with nano and under micron size) can be suitable to different applications in biomedicine. The nanostructures can be used by taking advantage of their properties (for example superparamagnetic nanoparticles) or functionalized to deliver the drug in a specific target, thanks the ability to cross biological barriers. The size and the shape of 1D-nanostructures (nanotubes and nanowires) have an important role on the cell fate: their morphology plays a key role on the interaction between nanostructure and the biological system. For this reason the 1D nanostructure are interesting for their ability to mime the biological system. An implantable material or device must therefore integrate with the surrounding extracellular matrix (ECM), a complex network of proteins with structural and signaling properties. Innovative techniques allow the generation of complex surface patterns that can resemble the structure of the ECM, such as 1D nanostructures. NWs based on cubic silicon carbide (3C-SiC), either bare (3C-SiC NWs) or surrounded by an amorphous shell (3C-SiC/SiO2 core/shell NWs), and silicon oxycarbide nanowires (SiOxCy NWs) can meet the chemical, mechanical and electrical requirements for tissue engineering and have a strong potential to pave the way for the development of a novel generation of implantable nano-devices. Silicon oxycarbide shows promising physical and chemical properties as elastic modulus, bending strength and hardness, chemical durability superior to conventional silicate glasses in aggressive environments and high temperature stability up to 1300 °C. Moreover, it can easily be engineered through functionalization and decoration with macro-molecules and nanoparticles. Silicon carbide has been extensively studied for applications in harsh conditions, as chemical environment, high electric field and high and low temperature, owing to its high hardness, high thermal conductivity, chemical inertness and high electron mobility. Also, its cubic polytype (3C) is highly biocompatible and hemocompatible, and some prototypes of biomedical applications and biomedical devices have been already realized starting from 3C-SiC thin films. Cubic SiC-based NWs can be used as a biomimetic biomaterial, providing a robust and novel biocompatible biological interface . We cultured in vitro A549 human lung adenocarcinoma epithelial cells and L929 murine fibroblast cells over core/shell SiC/SiO2, SiOxCy and bare 3C-SiC nanowire platforms, and analysed the cytotoxicity, by indirect and direct contact tests, the cell adhesion, and the cell proliferation. These studies showed that all the nanowires are biocompatible according to ISO 10993 standards. We evaluated the blood compatibility through the interaction of the nanowires with platelet rich plasma. The adhesion and activation of platelets on the nanowire bundles, assessed via SEM imaging and soluble P-selectin quantification, indicated that a higher platelet activation is induced by the core/shell structures compared to the bare ones. Further, platelet activation is higher with 3C-SiC/SiO2 NWs and SiOxCyNWs, which therefore appear suitable in view of possible tissue regeneration. On the contrary, bare 3C-SiC NWs show a lower platelet activation and are therefore promising in view of implantable bioelectronics devices, as cardiovascular implantable devices. The NWs properties are suitable to allow the design of a novel subretinal Micro Device (MD). This devices is based on Si NWs and PEDOT:PSS, though the well know principle of the hybrid ordered bulk heterojunction (OBHJ). The aim is to develop a device based on a well-established photovoltaic technology and to adapt this know-how to the prosthetic field. The hybrid OBHJ allows to form a radial p–n junction on a nanowire/organic structure. In addition, the nanowires increase the light absorption by means of light scattering effects: a nanowires based p-n junction increases the light absorption up to the 80%, as previously demonstrated, overcoming the Shockley-Queisser limit of 30 % of a bulk p-n junction. Another interesting employment of these NWs is to design of a SiC based epicardial-interacting patch based on teflon that include SiC nanowires. . Such contact patch can bridge the electric conduction across the cardiac infarct as nanowires can ‘sense’ the direction of the wavefront propagation on the survival cardiac tissue and transmit it to the downstream surivived regions without discontinuity. The SiC NWs are tested in terms of toxicology, biocompatibility and conductance among cardiomyocytes and myofibroblasts.
Resumo:
The PhD activity described in this Thesis was focused on the study of metal-oxide wide-bandgap materials, aiming at fabricating new optoelectronic devices such as solar-blind UV photodetectors, high power electronics, and gas sensors. Photocurrent spectroscopy and DC photocurrent time evolution were used to investigate the performance of prototypes under different atmospheres, temperatures and excitation wavelengths (or dark conditions). Cathodoluminescence, absorption spectroscopy, XRD and SEM were used to assess structural, morphologic, electrical and optical properties of materials. This thesis is divided into two main sections, each describing the work done on a different metal-oxide semiconductor. 1) MOVPE-grown Ga2O3 thin films for UV solar-blind photodetectors and high power devices The semiconducting oxides, among them Ga2O3, have been employed for several decades as transparent conducting oxide (TCO) electrodes for fabrication of solar cells, displays, electronic, and opto-electronic devices. The interest was mainly confined to such applications, as these materials tend to grow intrinsically n-type, and attempts to get an effective p-type doping has consistently failed. The key requirements of TCO electrodes are indeed high electrical conductivity and good transparency, while crystallographic perfection is a minor issue. Furthermore, for a long period no high-quality substrates and epi-layers were available, which in turn impeded the development of a truly full-oxide electronics. Recently, Ga2O3 has attracted renewed interest, as large single crystals and high-quality homo- and hetero-epitaxial layers became available, which paved the way to novel application areas. Our research group spent the last two years in developing a low temperature (500-700°C) MOVPE growth procedure to obtain thin films of Ga2O3 on different substrates (Dept. of Physics and IMEM-CNR at UNIPR). We obtained a significant result growing on oriented sapphire epitaxial films of high crystalline, undoped, pure phase -Ga2O3 (hexagonal). The crystallographic properties of this phase were investigated by XRD, in order to clarify the lattice parameters of the hexagonal cell. First design and development of solar blind UV photodetectors based on -phase was carried out and the optoelectronic performance is evaluated by means of photocurrent spectroscopy. The UV-response is adequately fast and reliable to render this unusual phase a subject of great interest for future applications. The availability of a hexagonal phase of Ga2O3 stable up to 700°C, belonging to the same space group of gallium nitride, with high crystallinity and tunable electrical properties, is intriguing in view of the development of nitride-based devices, by taking advantage of the more favorable symmetry and epitaxial relationships with respect to the monoclinic β-phase. In addition, annealing at temperatures higher than 700°C demonstrate that the hexagonal phase converts totally in the monoclinic one. 2) ZnO nano-tetrapods: charge transport mechanisms and time-response in optoelectronic devices and sensors Size and morphology of ZnO at the nanometer scale play a key role in tailoring its physical and chemical properties. Thanks to the possibility of growing zinc oxide in a variety of different nanostructures, there is a great variety of applications, among which gas sensors, light emitting diodes, transparent conducting oxides, solar cells. Even if the operation of ZnO nanostructure-based devices has been recently demonstrated, the mechanisms of charge transport in these assembly is still under debate. The candidate performed an accurate investigation by photocurrent spectroscopy and DC-photocurrent time evolution of electrical response of both single-tetrapod and tetrapod-assembly devices. During the research done for this thesis, a thermal activation energy enables the performance of samples at high temperatures (above about 300°C). The energy barrier is related to the leg-to-leg interconnection in the assembly of nanotetrapods. Percolation mechanisms are responsible for both the very slow photo-response (minutes to hours or days) and the significant persistent photocurrent. Below the bandgap energy, electronic states were investigated but their contribution to the photocurrent are two-three order of magnitude lower than the band edge. Such devices are suitable for employ in photodetectors as well as in gas sensors, provided that the mechanism by which the photo-current is generated and gas adsorption on the surface modify the conductivity of the material are known.
Resumo:
We investigated surface waves guided by the boundary of a semi-infinite layered metal-dielectric nanostructure cut normally to the layers and a semi-infinite dielectric material. Using the Floquet-Bloch formalism, we found that Dyakonov-like surface waves with hybrid polarization can propagate in dramatically enhanced angular range compared to conventional birefringent materials. Our numerical simulations for an Ag-GaAs stack in contact with glass show a low to moderate influence of losses.
Resumo:
We rigorously analyze the propagation of localized surface waves that takes place at the boundary between a semi-infinite layered metal-dielectric (MD) nanostructure cut normally to the layers and a isotropic medium. It is demonstrated that Dyakonov-like surface waves (also coined dyakonons) with hybrid polarization may propagate in a wide angular range. As a consequence, dyakonon-based wave-packets (DWPs) may feature sub-wavelength beamwidths. Due to the hyperbolic-dispersion regime in plasmonic crystals, supported DWPs are still in the canalization regime. The apparent quadratic beam spreading, however, is driven by dissipation effects in metal.
Resumo:
The template carbonization technique enables the production of porous carbons and carbon-based composites with precisely designed, controlled pore structures. The resulting templated carbons are therefore useful to investigate and understand the relation between carbon nanostructure and electrocapacitive properties. In this short review paper, we introduce our works on electrochemical capacitance using zeolite-templated carbons and carbon-coated anodic aluminum oxide.
Resumo:
Thesis (Master's)--University of Washington, 2016-06
Resumo:
Doped ceria (CeO2,) compounds are fluorite type oxides, which show oxide ionic conductivity higher than yttria stabilized zirconia (YSZ), in oxidizing atmospheres. As a consequence of this, considerable interest has been shown in application of these materials for 'low (500-650 degreesC)' or 'intermediate (650-800 degreesC)' temperature operation, solid oxide fuel cells (SOFCs). In this study, the authors prepared two kinds of nanosize Sm-doped CeO2 particles with different morphologies: one type was round and the other was elongated. Processing these powders with different morphology produced dense materials with very different ionic conducting properties and different nanoscale microstructures. Since both particles are very fine and well dispersed, sintered bodies with high density (relative density >95% of theoretical) could be prepared using both types of powder particles. The electrical conductivity of sintered bodies prepared from these powders with different starting morphologies was very different. Materials prepared from particles having a round shape were much higher than those produced using powders with an elongated morphology. Measured activation energies of the corresponding sintered samples showed a similar trend; round particles (60 kJ/mol), elongated particles (74 kJ/mol). While X-ray diffraction (XRD) profiles of these sintered materials were identical, diffuse scatter was observed in the back.-round of selected area electron diffraction pattern recorded from both sintered bodies. This indicated an underlying structure that appeared to have been influenced by the processing technology. Detailed observation using high-resolution transmission electron microscopy (HR-TEM) revealed that the size of microdomain with ordering of cations in the sintered body made from round shape particles was much smaller than that of the sintered body made from elongated particles. Accordingly, it is concluded that the morphology of doped CeO2 powders strongly influenced the microdomain size and electrolytic properties in the doped CeO2 sintered body. (C) 2004 Elsevier B.V. All rights reserved.
Resumo:
This work presents the results of the nanostructural characterisation of the effect of sucrose as a template added to a sol derived from a tetraethoxysilane acid catalysed process. By increasing the sucrose template ratio, N-2 adsorption isotherms showed that the xerogel samples changed from a micropore to a mesopore nanostructure as evidenced by the formation of hysteresis at 0.5 partial pressure. In turn, this led to a direct increase in surface areas, pore volumes and average pore sizes. Sucrose has two molecular components of the same molecular weight: D-fructose and D-glucose. D-fructose resulted in the formation of higher pore volumes and pore sizes, while D-glucose formed higher surface area xerogels. Depending of the template ratio employed in the xerogel synthesis, average pore radius ranged from 8.8 to 26 Angstrom, while surface areas increased by over two fold up to 750 m(2) . g(-1). However, pore volumes increased by as much as six fold, from 0.15 to almost 1 cm(3) . g(-1).
Resumo:
Doped ceria (CeO2) compounds are fluorite related oxides which show oxide ionic conductivity higher than yttria-stabilized zirconia in oxidizing atmosphere. As a consequence of this, a considerable interest has been shown in application of these materials for low (400-650 degrees C) temperature operation of solid oxide fuel cells (SOFCs). In this paper, our experimental data about the influence of microstructure at the atomic level on electrochemical properties were reviewed in order to develop high quality doped CeO2 electrolytes in fuel cell applications. Using this data in the present paper, our original idea for a design of nanodomain structure in doped CeO2 electrolytes was suggested. The nanosized powders and dense sintered bodies of M doped CeO2 (M:Sm,Gd,La,Y,Yb, and Dy) compounds were fabricated. Also nanostiructural features in these specimens were introduced for conclusion of relationship between electrolytic properties and domain structure in doped CeO2. It is essential that the electrolytic properties in doped CeO2 solid electrolytes reflect in changes of microstructure even down to the atomic scale. Accordingly, a combined approach of nanostructure fabrication, electrical measurement and structure characterization was required to develop superior quality doped CeO2 electrolytes in the fuel cells.
Resumo:
By conducting point-by-point inscription in a continuously moving slab of pure fused silica at the optimal depth (170νm depth below the surface), we have fabricated a 250nm period nanostructure with 30nJ, 300fs, 1kHz pulses from a frequency-tripled Ti:sapphire laser. This is the smallest value for the inscribed period yet reported, and has been achieved with radical improvement in the quality of the inscribed nanostructures in comparison with previous reports.
Resumo:
By conducting point-by-point inscription in a continuously moving slab of a pure fused silica at the optimal depth (170 μm depth below the surface), we have fabricated a 250-nm-period nanostructure with 30 nJ, 300 fs, 1 kHz pulses from frequency-tripled Ti:sapphire laser. This is the smallest value for the inscribed period yet reported, and has been achieved with radical improvement in the quality of the inscribed nanostructures in comparison with previous reports. The performed numerical modeling confirms the obtained experimental results.