793 resultados para Content-Based Retrieval


Relevância:

30.00% 30.00%

Publicador:

Resumo:

The current economic crisis has rushed even more the economists’ concerns to identify new directions for the sustainable development of the society. In this context, the human capital is crystallised as the key variable of the creative economy and of the knowledge-based society. As such, we have directed the research underlying this paper to identifying the most eloquent indicators of human capital to meet the demands of the knowledge-based society and sustainable development as well as towards achieving a comprehensive analysis of the human capital in the EU countries, respectively of a comparative analysis: Romania - Portugal. To carry out this paper, the methodology used is based on the interdisciplinary triangulation involving approaches from the perspective of human resource management, economy and economic statistics. The research techniques used consist of the content analysis and investigation of secondary data of international organisations accredited in the field of this research, such as: the United Nation Development Programme - Human Development Reports, World Bank - World Development Reports, International Labour Organisation, Eurostat, European Commission’s Eurobarometer surveys and reports on human capital. The research results emphasise both similarities and differences between the two countries under the comparative analysis and the main directions in which one has to invest for the development of human capital.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Thesis submitted to Faculdade de Ciências e Tecnologia from Universidade Nova de Lisboa in partial fulfillment of the requirements for the obtention of the degree of Master of Science in Biotechnology

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Astringency is an organoleptic property of beverages and food products resulting mainly from the interaction of salivary proteins with dietary polyphenols. It is of great importance to consumers, but the only effective way of measuring it involves trained sensorial panellists, providing subjective and expensive responses. Concurrent chemical evaluations try to screen food astringency, by means of polyphenol and protein precipitation procedures, but these are far from the real human astringency sensation where not all polyphenol–protein interactions lead to the occurrence of precipitate. Here, a novel chemical approach that tries to mimic protein–polyphenol interactions in the mouth is presented to evaluate astringency. A protein, acting as a salivary protein, is attached to a solid support to which the polyphenol binds (just as happens when drinking wine), with subsequent colour alteration that is fully independent from the occurrence of precipitate. Employing this simple concept, Bovine Serum Albumin (BSA) was selected as the model salivary protein and used to cover the surface of silica beads. Tannic Acid (TA), employed as the model polyphenol, was allowed to interact with the BSA on the silica support and its adsorption to the protein was detected by reaction with Fe(III) and subsequent colour development. Quantitative data of TA in the samples were extracted by colorimetric or reflectance studies over the solid materials. The analysis was done by taking a regular picture with a digital camera, opening the image file in common software and extracting the colour coordinates from HSL (Hue, Saturation, Lightness) and RGB (Red, Green, Blue) colour model systems; linear ranges were observed from 10.6 to 106.0 μmol L−1. The latter was based on the Kubelka–Munk response, showing a linear gain with concentrations from 0.3 to 10.5 μmol L−1. In either of these two approaches, semi-quantitative estimation of TA was enabled by direct eye comparison. The correlation between the levels of adsorbed TA and the astringency of beverages was tested by using the assay to check the astringency of wines and comparing these to the response of sensorial panellists. Results of the two methods correlated well. The proposed sensor has significant potential as a robust tool for the quantitative/semi-quantitative evaluation of astringency in wine.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The development of nations depends on energy consumption, which is generally based on fossil fuels. This dependency produces irreversible and dramatic effects on the environment, e.g. large greenhouse gas emissions, which in turn cause global warming and climate changes, responsible for the rise of the sea level, floods, and other extreme weather events. Transportation is one of the main uses of energy, and its excessive fossil fuel dependency is driving the search for alternative and sustainable sources of energy such as microalgae, from which biodiesel, among other useful compounds, can be obtained. The process includes harvesting and drying, two energy consuming steps, which are, therefore, expensive and unsustainable. The goal of this EPS@ISEP Spring 2013 project was to develop a solar microalgae dryer for the microalgae laboratory of ISEP. A multinational team of five students from distinct fields of study was responsible for designing and building the solar microalgae dryer prototype. The prototype includes a control system to ensure that the microalgae are not destroyed during the drying process. The solar microalgae dryer works as a distiller, extracting the excess water from the microalgae suspension. This paper details the design steps, the building technologies, the ethical and sustainable concerns and compares the prototype with existing solutions. The proposed sustainable microalgae drying process is competitive as far as energy usage is concerned. Finally, the project contributed to increase the deontological ethics, social compromise skills and sustainable development awareness of the students.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Dissertação para obtenção do Grau de Mestre em Engenharia Química e Bioquímica

Relevância:

30.00% 30.00%

Publicador:

Resumo:

High-content analysis has revolutionized cancer drug discovery by identifying substances that alter the phenotype of a cell, which prevents tumor growth and metastasis. The high-resolution biofluorescence images from assays allow precise quantitative measures enabling the distinction of small molecules of a host cell from a tumor. In this work, we are particularly interested in the application of deep neural networks (DNNs), a cutting-edge machine learning method, to the classification of compounds in chemical mechanisms of action (MOAs). Compound classification has been performed using image-based profiling methods sometimes combined with feature reduction methods such as principal component analysis or factor analysis. In this article, we map the input features of each cell to a particular MOA class without using any treatment-level profiles or feature reduction methods. To the best of our knowledge, this is the first application of DNN in this domain, leveraging single-cell information. Furthermore, we use deep transfer learning (DTL) to alleviate the intensive and computational demanding effort of searching the huge parameter's space of a DNN. Results show that using this approach, we obtain a 30% speedup and a 2% accuracy improvement.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Dissertation submitted in partial fulfillment of the requirements for the Degree of Master of Science in Geospatial Technologies.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Com o aumento de plataformas móveis disponíveis no mercado e com o constante incremento na sua capacidade computacional, a possibilidade de executar aplicações e em especial jogos com elevados requisitos de desempenho aumentou consideravelmente. O mercado dos videojogos tem assim um cada vez maior número de potenciais clientes. Em especial, o mercado de jogos massive multiplayer online (MMO) tem-se tornado muito atractivo para as empresas de desenvolvimento de jogos. Estes jogos suportam uma elevada quantidade de jogadores em simultâneo que podem estar a executar o jogo em diferentes plataformas e distribuídos por um "mundo" de jogo extenso. Para incentivar a exploração desse "mundo", distribuem-se de forma inteligente pontos de interesse que podem ser explorados pelo jogador. Esta abordagem leva a um esforço substancial no planeamento e construção desses mundos, gastando tempo e recursos durante a fase de desenvolvimento. Isto representa um problema para as empresas de desenvolvimento de jogos, e em alguns casos, e impraticável suportar tais custos para equipas indie. Nesta tese e apresentada uma abordagem para a criação de mundos para jogos MMO. Estudam-se vários jogos MMO que são casos de sucesso de modo a identificar propriedades comuns nos seus mundos. O objectivo e criar uma framework flexível capaz de gerar mundos com estruturas que respeitam conjuntos de regras definidas por game designers. Para que seja possível usar a abordagem aqui apresentada em v arias aplicações diferentes, foram desenvolvidos dois módulos principais. O primeiro, chamado rule-based-map-generator, contem a lógica e operações necessárias para a criação de mundos. O segundo, chamado blocker, e um wrapper à volta do módulo rule-based-map-generator que gere as comunicações entre servidor e clientes. De uma forma resumida, o objectivo geral e disponibilizar uma framework para facilitar a geração de mundos para jogos MMO, o que normalmente e um processo bastante demorado e aumenta significativamente o custo de produção, através de uma abordagem semi-automática combinando os benefícios de procedural content generation (PCG) com conteúdo gráfico gerado manualmente.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Dissertação para obtenção do Grau de Mestre em Engenharia Informática

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Dissertação de Mestrado em Engenharia Informática 2º Semestre, 2011/2012

Relevância:

30.00% 30.00%

Publicador:

Resumo:

3rd Historic Mortars Conference, 11-14 September 2013, Glasgow, Scotland

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Dissertação para obtenção do Grau de Doutor em Informática

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Clayish earth-based mortars can be considered eco-efficient products for indoor plastering since they can contribute to improve important aspects of building performance and sustainability. Apart from being products with low embodied energy when compared to other types of mortars used for interior plastering, mainly due to the use raw clay as natural binder, earth-based plasters may give a significant contribution for health and comfort of inhabitants. Due to high hygroscopicity of clay minerals, earth-based mortars present a high adsorption and desorption capacity, particularly when compared to other type of mortars for interior plastering. This capacity allows earth-based plasters to act as a moisture buffer, balancing the relative humidity of the indoor environment and, simultaneously, acting as a passive removal material, improving air quality. Therefore, earth-based plasters may also passively promote the energy efficiency of buildings, since they may contribute to decreasing the needs of mechanical ventilation and air conditioning. This study is part of an ongoing research regarding earth-based plasters and focuses on mortars specifically formulated with soils extracted from Portuguese ‘Barrocal’ region, in Algarve sedimentary basin. This region presents high potential for interior plastering due to regional geomorphology, that promote the occurrence of illitic soils characterized by a high adsorption capacity and low expansibility. More specifically, this study aims to assess how clayish earth and sand ratio of mortars formulation can influence the physical and mechanical properties of plasters. For this assessment four mortars were formulated with different volumetric proportions of clayish earth and siliceous sand. The results from the physical and mechanical characterization confirmed the significantly low linear shrinkage of all the four mortars, as well as their extraordinary adsorption-desorption capacity. These results presented a positive correlation with mortars´ clayish earth content and are consistent with the mineralogical analysis, that confirmed illite as the prevalent clay mineral in the clayish earth used for this study. Regarding mechanical resistance, although the promising results of the adhesion test, the flexural and compressive strength results suggest that the mechanical resistance of these mortars should be slightly improved. Considering the present results the mortars mechanical resistance improvement may be achieved through the formulation of mortars with higher clayish earth content, or alternatively, through the addition of natural fibers to mortars formulation, very common in this type of mortars. Both those options will be investigated in future research.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The work presented in this thesis explores novel routes for the processing of bio-based polymers, developing a sustainable approach based on the use of alternative solvents such as supercritical carbon dioxide (scCO2), ionic liquids (ILs) and deep eutectic solvents (DES). The feasibility to produce polymeric foams via supercritical fluid (SCF) foaming, combined with these solvents was assessed, in order to replace conventional foaming techniques that use toxic and harmful solvents. A polymer processing methodology is presented, based on SCF foaming and using scCO2 as a foaming agent. The SCF foaming of different starch based polymeric blends was performed, namely starch/poly(lactic acid) (SPLA) and starch/poly(ε-caprolactone) (SPCL). The foaming process is based on the fact that CO2 molecules can dissolve in the polymer, changing their mechanical properties and after suitable depressurization, are able to create a foamed (porous) material. In these polymer blends, CO2 presents limited solubility and in order to enhance the foaming effect, two different imidazolium based ILs (IBILs) were combined with this process, by doping the blends with IL. The use of ILs proved useful and improved the foaming effect in these starch-based polymer blends. Infrared spectroscopy (FTIR-ATR) proved the existence of interactions between the polymer blend SPLA and ILs, which in turn diminish the forces that hold the polymeric structure. This is directly related with the ability of ILs to dissolve more CO2. This is also clear from the sorption experiments results, where the obtained apparent sorption coefficients in presence of IL are higher compared to the ones of the blend SPLA without IL. The doping of SPCL with ILs was also performed. The foaming of the blend was achieved and resulted in porous materials with conductivity values close to the ones of pure ILs. This can open doors to applications as self-supported conductive materials. A different type of solvents were also used in the previously presented processing method. If different applications of the bio-based polymers are envisaged, replacing ILs must be considered, especially due to the poor sustainability of some ILs and the fact that there is not a well-established toxicity profile. In this work natural DES – NADES – were the solvents of choice. They present some advantages relatively to ILs since they are easy to produce, cheaper, biodegradable and often biocompatible, mainly due to the fact that they are composed of primary metabolites such as sugars, carboxylic acids and amino-acids. NADES were prepared and their physicochemical properties were assessed, namely the thermal behavior, conductivity, density, viscosity and polarity. With this study, it became clear that these properties can vary with the composition of NADES, as well as with their initial water content. The use of NADES in the SCF foaming of SPCL, acting as foaming agent, was also performed and proved successful. The SPCL structure obtained after SCF foaming presented enhanced characteristics (such as porosity) when compared with the ones obtained using ILs as foaming enhancers. DES constituted by therapeutic compounds (THEDES) were also prepared. The combination of choline chloride-mandelic acid, and menthol-ibuprofen, resulted in THEDES with thermal behavior very distinct from the one of their components. The foaming of SPCL with THEDES was successful, and the impregnation of THEDES in SPCL matrices via SCF foaming was successful, and a controlled release system was obtained in the case of menthol-ibuprofen THEDES.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Marine organisms are rich in a variety of materials with potential use in Tissue Engineering and Regenerative Medicine. One important example is fucoidan, a sulfated polysaccharide extracted from the cell wall of brown seaweeds.  Fucoidan is composed by L-fucose, sulfate groups and glucuronic acid. It has important bioactive properties such as anti-oxidative, anticoagulant, anticancer and reducing the blood glucose (1). In this work, the biomedical potential of fucoidan-based materials as drug delivery system was assessed by processing modified fucoidan (MFu) into particles by photocrosslinking using superamphiphobic surfaces and visible light. Fucoidan was modified by methacrylation reaction using different concentrations of methacrylate anhydride, namely 8% v/v (MFu1) and 12% v/v (MFu2). Further, MFu particles with and without insulin (5% w/v) were produced by pipetting a solution of 5% MFu with triethanolamine and eosin-y onto a superamphiphobic surface and then photocrosslinking using visible light (2). The developed particles were characterized to assess their chemistry, morphology, swelling behavior, drug release, insulin content and encapsulation efficiency. Moreover, the viability assays of fibroblast L929 cells in contact with MFu particles showed good adhesion and proliferation up to 14 days. Furthermore, the therapeutic potential of these particles using human beta cells is currently under investigation. Results obtained so far suggest that modified fucoidan particles could be a good candidate for diabetes mellitus therapeutic approaches.