929 resultados para Contamination for lead
Resumo:
The present paper deals with the distribution patterns of heavy metals and the associated influencing factors in the Yalu River Estuary and its adjacent coastal waters. Based upon the analysis of the surficial and core sediments measurements, the pollution of heavy metal and potential ecological risk were evaluated. The burial flux and contents of heavy metals (except for copper) have been continuously increasing since the 1920s. Therefore, the gross potential ecological risk for the sediments was high or very high, and the study area was endangered by heavy metals contamination. Heavy metals originated mainly from upstream pollutant input, correlation analysis showed that chromium, nickel, zinc, cadmium, lead, arsenic, and mercury in the sediments of the middle and west channels as well as the sea area of the western Yalu River Estuary concentrations were most probably derived from similar sources. In contrast, the metal of copper most probably originated from sources different from the other metals. Preliminary studies indicate that copper contamination was most likely the result of emission from mining activities situated at the upstream of the river. The contents of heavy metals in the sediments of estuarine turbidity maximum zone of Yalu River were larger than those of any other areas in the middle channel. With large portion of fine sediments, weaker hydrodynamics, and richer sources of heavy metals, the sediments of the west channel, were even more enriched with heavy metals than those of the middle channel.
Resumo:
A Nafion/ionophore, 4-tert-butylcalix[4]arene-tetrakis(N,N-dimethylthioacetamide) composite coated and bismuth film modified glassy carbon electrode. (GC/NA-IONO/BiFE) was described to determine trace lead sensitively and selectively. The characteristics of such modified GC/NA-IONO/BiFE were studied by scanning electron microscopy and cyclic voltammetry. The influence of various experimental parameters upon the stripping lead signal at the GC/NA-IONO/BiFE was explored. Under the optimized conditions, the differential pulse voltammetric stripping response is highly linear over the 0.1-8.0 nM lead range examined (180s preconcentration at -1.2V), with a detection limit of 0.044nM and good precision (RSD=5.4% at 0.5nM). Also applicability to seawater samples was demonstrated at such modified electrode. The high selectivity of ionophore coupled with the excellent electrochemical characteristics of bismuth endow the GC/NA-IONO/BiFE a promising and robust tool for monitoring of trace lead rapidly and precisely.
Resumo:
In order to assess the toxicity of heavy metals on the early development of Meretrix meretrix, the effects of mercury (Hg), cadmium (Cd) and lead (Pb) on embryogenesis, survival, growth and metamorphosis of larvae were investigated. The EC50 for embryogenesis was 5.4 mu g l(-1) for Hg, 1014 mu g l(-1) for Cd and 297 mu g l(-1) for Pb, respectively. The 96 h LC50 for D-shaped larvae was 14.0 mu g l(-1) for Hg, 68 mu g l(-1) for Cd and 353 mu g l(-1) for Pb, respectively. Growth was significantly retarded at 18.5 mu g l(-1) (0.1 mu M) for Hg, 104 mu g l(-1) (1 mu M) for Cd and 197 mu g l(-1) (1 mu M) for Pb, respectively. The EC50 for metamorphosis, similar to 48 h LC50, was higher than 96 h LC50. Our results indicate that the early development of M. meretrix is highly sensitive to heavy metals and can be used as a test organism for ecotoxicology bioassays in temperate and subtropical regions.
Resumo:
Sixteen polycyclic aromatic hydrocarbons (PAHs) and 28 polychlorinated biphenyls (PCBs) were measured at a 2-cm interval in a core sample from the middle of the southern Yellow Sea for elucidating their historical variations in inflow and sources. The chronology was obtained using the Pb-210 method. PAHs concentrations decreased generally with depth and two climax values occurred in 14-16 cm and 20-22 cm layers, demonstrating that the production and usage of PAHs might reach peaks in the periods of 1956-1962 and 1938-1944. The booming economy and the navy battles of the Second World War might explain why the higher levels were detected in the two layers. The result of principal component analysis (PCA) revealed that PAHs were primarily owing to the combustion product. Down-cored variation of PCB concentrations was complex. Higher concentrations besides the two peaks being the same as PAHs were detected from 4 to 8 cm, depositing from 1980 to 1992, which probably resulted from the disposal of the out-dated PCB-containing equipment. The average Cl percentage of PCBs detected was similar to that of the mixture of Aroclor 1254 and 1242, suggesting they might origin from the dielectrical and heat-transfer fluid. The total organic carbon (TOC) content played a prevalent role in the adsorption of high molecular weight PAHs (>= 4-ring), while no obvious relationship among total PCBs, the concentration of congeners, and TOC was found.
Resumo:
An assessment of metal contamination in surface sediments of the Jiaozhou Bay, Qingdao, one of the rapidly developing coastal economic zones in China, is provided. Sediments were collected from 10 stations and a total of 15 heavy metals were analyzed. Concentrations of metals show significant variability and range from 210 to 620 ppm for Ti, 2.7 to 23 ppm for Ni, 4.2 to 28 ppm for Cu, 5.2 to 18 ppm for Pb, 12 to 58 ppm for Zn, 0.03 to 0.11 ppm for Cd, 5 to 51 ppm for Cr, 1.5 to 9.9 ppm for Co, 5.3 to 19 ppm for As, 12 to 32 ppm for Se, and 19 to 97 ppm for Sr. Based on concentration relationships and enrichment factor (EF) analyses, the results indicate that sediment grain size and organic matter played important roles in controlling the distribution of the heavy metals in surface sediments of the Jiaozhou Bay. The study shows that the sediment of the Jiaozhou Bay has been contaminated by heavy metals to various degrees, with prominent arsenic contributing the most to the contamination. The analysis suggests that the major sources of metal contamination in the Jiaozhou Bay are land-based anthropogenic ones, such as discharge of industrial waste water and municipal sewage and run-off. Notably, the elevated heavy metal concentrations of the Jiaozhou Bay sediments could have a significant impact on the bay's ecosystem. With the rapid economic development and urbanization around the Jiaozhou Bay, coastal management and pollution control should focus on these contaminant sources, as well as provide ongoing monitoring studies of heavy metal contamination within the bay.
Resumo:
Biosorption is an effective method to remove heavy metals from wastewater. In this work, adsorption features of Cladophora fascicularis were investigated as a function of time, initial pH, initial Pb(II) concentrations, temperature and co-existing ions. Kinetics and equilibria were obtained from batch experiments. The biosorption kinetics followed the pseudo-second order model. Adsorption equilibria were well described by the Langmuir and Freundlich isotherm models. The maximum adsorption capacity was 198.5 mg/g at 298 K and pH 5.0. The adsorption processes were endothermic and the biosorption heat was 29.6 kJ/mol. Desorption experiments indicated that 0.01 mol/L Na(2)EDTA was an efficient desorbent for the recovery of Pb(II) from biomass. IR spectrum analysis suggested amido or hydroxy, C=O and C-O could combine intensively with Pb(II). (C) 2006 Elsevier B.V. All rights reserved.
Resumo:
Biosorption of Cu2+ and Pb2+ by Cladophora fascicularis was investigated as a function of initial pH, initial heavy metal concentrations, temperature and other co-existing ions. Adsorption equilibriums were well described by Langmuir and Freundlich isotherm models. The maximum adsorption capacities were 1.61 mmol/ g for Cu2+ and 0.96 mmol/ g for Pb2+ at 298K and pH 5.0. The adsorption processes were endothermic and biosorption heats calculated by the Langmuir constant b were 39.0 and 29.6 kJ/ mol for Cu2+ and Pb2+, respectively. The biosorption kinetics followed the pseudo- second order model. No significant effect on the uptake of Cu2+ and Pb2+ by co-existing cations and anions was observed, except EDTA. Desorption experiments indicated that Na(2)EDTA was an efficient desorbent for the recovery of Cu2+ and Pb2+ from biomass. The results showed that Cladophora fascicularis was an effective and economical biosorbent material for the removal and recovery of heavy metal ions from wastewater.
Resumo:
A new lead(II) phosphonate, Pb[(PO3)(2)C(OH)CH3]center dot H2O (1) was hydrothermally synthesized and characterized by IR, elemental analysis, UV, TGA, SEM, and single crystal X-ray diffraction analysis. X-ray crystallographic study showed that complex 1 has a two-dimensional double layered hybrid structure containing interconnected 4- and 12-membered rings and shows an unusual (5,5)-connected (4(7) . 6(3)) (4(8) .6(2)) topology. (C) 2008 Elsevier B.V. All rights reserved.