966 resultados para Conjugate gradient methods.
Resumo:
Purpose: James Clerk Maxwell is usually recognized as being the first, in 1854, to consider using inhomogeneous media in optical systems. However, some fifty years earlier Thomas Young, stimulated by his interest in the optics of the eye and accommodation, had already modeled some applications of gradient-index optics. These applications included using an axial gradient to provide spherical aberration-free optics and a spherical gradient to describe the optics of the atmosphere and the eye lens. We evaluated Young’s contributions. Method: We attempted to derive Young’s equations for axial and spherical refractive index gradients. Raytracing was used to confirm accuracy of formula. Results: We did not confirm Young’s equation for the axial gradient to provide aberration-free optics, but derived a slightly different equation. We confirmed the correctness of his equations for deviation of rays in a spherical gradient index and for the focal length of a lens with a nucleus of fixed index surrounded by a cortex of reducing index towards the edge. Young claimed that the equation for focal length applied to a lens with part of the constant index nucleus of the sphere removed, such that the loss of focal length was a quarter of the thickness removed, but this is not strictly correct. Conclusion: Young’s theoretical work in gradient-index optics received no acknowledgement from either his contemporaries or later authors. While his model of the eye lens is not an accurate physiological description of the human lens, with the index reducing least quickly at the edge, it represented a bold attempt to approximate the characteristics of the lens. Thomas Young’s work deserves wider recognition.
Resumo:
Purpose: To compare accuracies of different methods for calculating human lens power when lens thickness is not available. Methods: Lens power was calculated by four methods. Three methods were used with previously published biometry and refraction data of 184 emmetropic and myopic eyes of 184 subjects (age range [18, 63] years, spherical equivalent range [–12.38, +0.75] D). These three methods consist of the Bennett method, which uses lens thickness, our modification of the Stenström method and the Bennett¬Rabbetts method, both of which do not require knowledge of lens thickness. These methods include c constants, which represent distances from lens surfaces to principal planes. Lens powers calculated with these methods were compared with those calculated using phakometry data available for a subgroup of 66 emmetropic eyes (66 subjects). Results: Lens powers obtained from the Bennett method corresponded well with those obtained by phakometry for emmetropic eyes, although individual differences up to 3.5D occurred. Lens powers obtained from the modified¬Stenström and Bennett¬Rabbetts methods deviated significantly from those obtained with either the Bennett method or phakometry. Customizing the c constants improved this agreement, but applying these constants to the entire group gave mean lens power differences of 0.71 ± 0.56D compared with the Bennett method. By further optimizing the c constants, the agreement with the Bennett method was within ± 1D for 95% of the eyes. Conclusion: With appropriate constants, the modified¬Stenström and Bennett¬Rabbetts methods provide a good approximation of the Bennett lens power in emmetropic and myopic eyes.
Resumo:
Here we present a sequential Monte Carlo (SMC) algorithm that can be used for any one-at-a-time Bayesian sequential design problem in the presence of model uncertainty where discrete data are encountered. Our focus is on adaptive design for model discrimination but the methodology is applicable if one has a different design objective such as parameter estimation or prediction. An SMC algorithm is run in parallel for each model and the algorithm relies on a convenient estimator of the evidence of each model which is essentially a function of importance sampling weights. Other methods for this task such as quadrature, often used in design, suffer from the curse of dimensionality. Approximating posterior model probabilities in this way allows us to use model discrimination utility functions derived from information theory that were previously difficult to compute except for conjugate models. A major benefit of the algorithm is that it requires very little problem specific tuning. We demonstrate the methodology on three applications, including discriminating between models for decline in motor neuron numbers in patients suffering from neurological diseases such as Motor Neuron disease.
Resumo:
During the course of several natural disasters in recent years, Twitter has been found to play an important role as an additional medium for many–to–many crisis communication. Emergency services are successfully using Twitter to inform the public about current developments, and are increasingly also attempting to source first–hand situational information from Twitter feeds (such as relevant hashtags). The further study of the uses of Twitter during natural disasters relies on the development of flexible and reliable research infrastructure for tracking and analysing Twitter feeds at scale and in close to real time, however. This article outlines two approaches to the development of such infrastructure: one which builds on the readily available open source platform yourTwapperkeeper to provide a low–cost, simple, and basic solution; and, one which establishes a more powerful and flexible framework by drawing on highly scaleable, state–of–the–art technology.
Resumo:
Fractional differential equations are becoming more widely accepted as a powerful tool in modelling anomalous diffusion, which is exhibited by various materials and processes. Recently, researchers have suggested that rather than using constant order fractional operators, some processes are more accurately modelled using fractional orders that vary with time and/or space. In this paper we develop computationally efficient techniques for solving time-variable-order time-space fractional reaction-diffusion equations (tsfrde) using the finite difference scheme. We adopt the Coimbra variable order time fractional operator and variable order fractional Laplacian operator in space where both orders are functions of time. Because the fractional operator is nonlocal, it is challenging to efficiently deal with its long range dependence when using classical numerical techniques to solve such equations. The novelty of our method is that the numerical solution of the time-variable-order tsfrde is written in terms of a matrix function vector product at each time step. This product is approximated efficiently by the Lanczos method, which is a powerful iterative technique for approximating the action of a matrix function by projecting onto a Krylov subspace. Furthermore an adaptive preconditioner is constructed that dramatically reduces the size of the required Krylov subspaces and hence the overall computational cost. Numerical examples, including the variable-order fractional Fisher equation, are presented to demonstrate the accuracy and efficiency of the approach.
Resumo:
In this paper we extend the ideas of Brugnano, Iavernaro and Trigiante in their development of HBVM($s,r$) methods to construct symplectic Runge-Kutta methods for all values of $s$ and $r$ with $s\geq r$. However, these methods do not see the dramatic performance improvement that HBVMs can attain. Nevertheless, in the case of additive stochastic Hamiltonian problems an extension of these ideas, which requires the simulation of an independent Wiener process at each stage of a Runge-Kutta method, leads to methods that have very favourable properties. These ideas are illustrated by some simple numerical tests for the modified midpoint rule.
Resumo:
Tissue-specific extracellular matrix (ECM) is known to be an ideal bioscaffold to inspire the future of regenerative medicine. It holds the secret of how nature has developed such an organization of molecules into a unique functional complexity. This work exploited an innovative image processing algorithm and high resolution microscopy associated with mechanical analysis to establish a correlation between the gradient organization of cartiligous ECM and its anisotropic biomechanical response. This was hypothesized to be a reliable determinant that can elucidate how microarchitecture interrelates with biomechanical properties. Hough-Radon transform of the ECM cross-section images revealed its conformational variation from tangential interface down to subchondral region. As the orientation varied layer by layer, the anisotropic mechanical response deviated relatively. Although, results were in good agreement (Kendall's tau-b > 90%), there were evidences proposing that alignment of the fibrous network, specifically in middle zone, is not as random as it was previously thought.
Resumo:
In this paper, the multi-term time-fractional wave diffusion equations are considered. The multiterm time fractional derivatives are defined in the Caputo sense, whose orders belong to the intervals [0,1], [1,2), [0,2), [0,3), [2,3) and [2,4), respectively. Some computationally effective numerical methods are proposed for simulating the multi-term time-fractional wave-diffusion equations. The numerical results demonstrate the effectiveness of theoretical analysis. These methods and techniques can also be extended to other kinds of the multi-term fractional time-space models with fractional Laplacian.
Resumo:
Anomalous subdiffusion equations have in recent years received much attention. In this paper, we consider a two-dimensional variable-order anomalous subdiffusion equation. Two numerical methods (the implicit and explicit methods) are developed to solve the equation. Their stability, convergence and solvability are investigated by the Fourier method. Moreover, the effectiveness of our theoretical analysis is demonstrated by some numerical examples. © 2011 American Mathematical Society.
Resumo:
In this paper, a class of fractional advection–dispersion models (FADMs) is considered. These models include five fractional advection–dispersion models, i.e., the time FADM, the mobile/immobile time FADM with a time Caputo fractional derivative 0 < γ < 1, the space FADM with two sides Riemann–Liouville derivatives, the time–space FADM and the time fractional advection–diffusion-wave model with damping with index 1 < γ < 2. These equations can be used to simulate the regional-scale anomalous dispersion with heavy tails. We propose computationally effective implicit numerical methods for these FADMs. The stability and convergence of the implicit numerical methods are analysed and compared systematically. Finally, some results are given to demonstrate the effectiveness of theoretical analysis.
Resumo:
Conducting research into crime and criminal justice carries unique challenges. This Handbook focuses on the application of 'methods' to address the core substantive questions that currently motivate contemporary criminological research. It maps a canon of methods that are more elaborated than in most other fields of social science, and the intellectual terrain of research problems with which criminologists are routinely confronted. Drawing on exemplary studies, chapters in each section illustrate the techniques (qualitative and quantitative) that are commonly applied in empirical studies, as well as the logic of criminological enquiry. Organized into five sections, each prefaced by an editorial introduction, the Handbook covers: • Crime and Criminals • Contextualizing Crimes in Space and Time: Networks, Communities and Culture • Perceptual Dimensions of Crime • Criminal Justice Systems: Organizations and Institutions • Preventing Crime and Improving Justice Edited by leaders in the field of criminological research, and with contributions from internationally renowned experts, The SAGE Handbook of Criminological Research Methods is set to become the definitive resource for postgraduates, researchers and academics in criminology, criminal justice, policing, law, and sociology.