896 resultados para Computer aided analysis, Machine vision, Video surveillance


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Breast cancer is the most common cancer among women. In CAD systems, several studies have investigated the use of wavelet transform as a multiresolution analysis tool for texture analysis and could be interpreted as inputs to a classifier. In classification, polynomial classifier has been used due to the advantages of providing only one model for optimal separation of classes and to consider this as the solution of the problem. In this paper, a system is proposed for texture analysis and classification of lesions in mammographic images. Multiresolution analysis features were extracted from the region of interest of a given image. These features were computed based on three different wavelet functions, Daubechies 8, Symlet 8 and bi-orthogonal 3.7. For classification, we used the polynomial classification algorithm to define the mammogram images as normal or abnormal. We also made a comparison with other artificial intelligence algorithms (Decision Tree, SVM, K-NN). A Receiver Operating Characteristics (ROC) curve is used to evaluate the performance of the proposed system. Our system is evaluated using 360 digitized mammograms from DDSM database and the result shows that the algorithm has an area under the ROC curve Az of 0.98 ± 0.03. The performance of the polynomial classifier has proved to be better in comparison to other classification algorithms. © 2013 Elsevier Ltd. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Plant phenology is one of the most reliable indicators of species responses to global climate change, motivating the development of new technologies for phenological monitoring. Digital cameras or near remote systems have been efficiently applied as multi-channel imaging sensors, where leaf color information is extracted from the RGB (Red, Green, and Blue) color channels, and the changes in green levels are used to infer leafing patterns of plant species. In this scenario, texture information is a great ally for image analysis that has been little used in phenology studies. We monitored leaf-changing patterns of Cerrado savanna vegetation by taking daily digital images. We extract RGB channels from the digital images and correlate them with phenological changes. Additionally, we benefit from the inclusion of textural metrics for quantifying spatial heterogeneity. Our first goals are: (1) to test if color change information is able to characterize the phenological pattern of a group of species; (2) to test if the temporal variation in image texture is useful to distinguish plant species; and (3) to test if individuals from the same species may be automatically identified using digital images. In this paper, we present a machine learning approach based on multiscale classifiers to detect phenological patterns in the digital images. Our results indicate that: (1) extreme hours (morning and afternoon) are the best for identifying plant species; (2) different plant species present a different behavior with respect to the color change information; and (3) texture variation along temporal images is promising information for capturing phenological patterns. Based on those results, we suggest that individuals from the same species and functional group might be identified using digital images, and introduce a new tool to help phenology experts in the identification of new individuals from the same species in the image and their location on the ground. © 2013 Elsevier B.V. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In Computer-Aided Diagnosis-based schemes in mammography analysis each module is interconnected, which directly affects the system operation as a whole. The identification of mammograms with and without masses is highly needed to reduce the false positive rates regarding the automatic selection of regions of interest for further image segmentation. This study aims to evaluate the performance of three techniques in classifying regions of interest as containing masses or without masses (without clinical findings), as well as the main contribution of this work is to introduce the Optimum-Path Forest (OPF) classifier in this context, which has never been done so far. Thus, we have compared OPF against with two sorts of neural networks in a private dataset composed by 120 images: Radial Basis Function and Multilayer Perceptron (MLP). Texture features have been used for such purpose, and the experiments have demonstrated that MLP networks have been slightly better than OPF, but the former is much faster, which can be a suitable tool for real-time recognition systems.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The aim of this study was to evaluate the internal fit, marginal adaptation, and bond strengths of inlays made of computer-aided design/computer-aided manufacturing feldspathic ceramic and polymer-infiltrated ceramic. Twenty molars were randomly selected and prepared to receive inlays that were milled from both materials. Before cementation, internal fit was achieved using the replica technique by molding the internal surface with addition silicone and measuring the cement thicknesses of the pulpal and axial walls. Marginal adaptation was measured on the occlusal and proximal margins of the replica. The inlays were then cemented using resin cement (Panavia F2.0) and subjected to two million thermomechanical cycles in water (200 N load and 3.8-Hz frequency). The restored teeth were then cut into beams, using a lathe, for microtensile testing. The contact angles, marginal integrity, and surface patterns after etching were also observed. Statistical analysis was performed using two-way repeated measures analysis of variance (p<0.05), the Tukey test for internal fit and marginal adaptation, and the Student t-test for bond strength. The failure types (adhesive or cohesive) were classified on each fractured beam. The results showed that the misfit of the pulpal walls (p=0.0002) and the marginal adaptation (p=0.0001) of the feldspathic ceramic were significantly higher when compared to those of the polymer-infiltrated ceramic, while the bond strength values of the former were higher when compared to those of the latter. The contact angle of the polymer-infiltrated ceramic was also higher. In the present study, the hybrid ceramic presented improved internal and marginal adaptation, but the bond strengths were higher for the feldspathic ceramic.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Purpose: The aim of this study was to assess the contributions of some prosthetic parameters such as crown-to-implant (C/I) ratio, retention system, restorative material, and occlusal loading on stress concentrations within a single posterior crown supported by a short implant. Materials and Methods: Computer-aided design software was used to create 32 finite element models of an atrophic posterior partially edentulous mandible with a single external-hexagon implant (5 mm wide × 7 mm long) in the first molar region. Finite element analysis software with a convergence analysis of 5% to mesh refinement was used to evaluate the effects of C/I ratio (1:1; 1.5:1; 2:1, or 2.5:1), prosthetic retention system (cemented or screwed), and restorative material (metal-ceramic or all ceramic). The crowns were loaded with simulated normal or traumatic occlusal forces. The maximum principal stress (σmax) for cortical and cancellous bone and von Mises stress (σvM) for the implant and abutment screw were computed and analyzed. The percent contribution of each variable to the stress concentration was calculated from the sum of squares analysis. Results: Traumatic occlusion and a high C/I ratio increased stress concentrations. The C/I ratio was responsible for 11.45% of the total stress in the cortical bone, whereas occlusal loading contributed 70.92% to the total stress in the implant. The retention system contributed 0.91% of the total stress in the cortical bone. The restorative material was responsible for only 0.09% of the total stress in the cancellous bone. Conclusion: Occlusal loading was the most important stress concentration factor in the finite element model of a single posterior crown supported by a short implant.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The high competitiveness and the search for newtechnologies that differentiate the product from the project,require the use of new digital tools. The computer aideddesign - Computed Aided Design (CAD), with electronicmodeling, simulation, structural analysis and production,performed in a virtual environment through the applicationof specific software, are available but their use is stilllimited. There are various software available in languagesand extensions to industrial production which, from 3Dmodeling, they can manage through Computer NumericalControl - Computed Numerical Control (CNC) machiningcenters, laminating, stamping, mold making and otherprocesses productive. This project aims to encouragecreativity and entrepreneurship in the community throughthe provision of technology computer aided design - CAD,with a view to implementation of machining technology.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In all segments, the companies are looking for the highest productivity with the lowest possible cost, and in the construction industry, the thinking is the same. Over time, techniques that generate more productivity supplanted previous techniques; an example is the CAD technology that replaced free drawings in projects execution. However, the Computer Aided Design (CAD) technology does not deal with certain factors that permeate the entire project. It is required the use of other techniques to supply this need in traditional projects. For example, a software for schedule management, another for assets management and a person who makes calculations for estimates and budgets. The BIM (Building Information Modeling) technology aims to integrate all this information, facilitating the communication among members of a work team and reducing the time required to carry out the project. This work is a applied research, a descriptive research, carried out through modeling and simulation, processes inherent in the use of BIM, a survey was also used only to contextualization. BIM was used for a soccer stadium roof project, in order to verify the feasibility of such use through the analysis of: BIM tools, difficulties encountered and implications of BIM use, and comparison of traditional methods and the use of BIM. To aid the contextualization, a survey was conducted to verify the use of BIM in medium and small companies