893 resultados para Computer Science, Software Engineering


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Funding For M.C., the major part of the work on this article was carried out while he was affiliated with the Interdisciplinary Centre for Security, Reliability and Trust at the University of Luxembourg. His research was supported by the National Research Fund, Luxembourg (LAAMI project), as well as by the Engineering and Physical Sciences Research Council (EPSRC, UK), grant ref. EP/J012084/1 (SAsSY project). For S.V., the major part of the work on this article was carried out while he was affiliated with the Computer Science and Communication Research Unit at the University of Luxembourg. He worked on this article during the tenure of an ERCIM Alain Bensoussan Fellowship Programme, which is supported by the Marie Curie Co-funding of Regional, National and International Programmes (COFUND) of the European Commission. During this time, he was also funded by the National Research Fund, Luxembourg. When finishing the work on this article, he was a CRNS researcher affiliated with CRIL

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Funding For M.C., the major part of the work on this article was carried out while he was affiliated with the Interdisciplinary Centre for Security, Reliability and Trust at the University of Luxembourg. His research was supported by the National Research Fund, Luxembourg (LAAMI project), as well as by the Engineering and Physical Sciences Research Council (EPSRC, UK), grant ref. EP/J012084/1 (SAsSY project). For S.V., the major part of the work on this article was carried out while he was affiliated with the Computer Science and Communication Research Unit at the University of Luxembourg. He worked on this article during the tenure of an ERCIM Alain Bensoussan Fellowship Programme, which is supported by the Marie Curie Co-funding of Regional, National and International Programmes (COFUND) of the European Commission. During this time, he was also funded by the National Research Fund, Luxembourg. When finishing the work on this article, he was a CRNS researcher affiliated with CRIL

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Subspaces and manifolds are two powerful models for high dimensional signals. Subspaces model linear correlation and are a good fit to signals generated by physical systems, such as frontal images of human faces and multiple sources impinging at an antenna array. Manifolds model sources that are not linearly correlated, but where signals are determined by a small number of parameters. Examples are images of human faces under different poses or expressions, and handwritten digits with varying styles. However, there will always be some degree of model mismatch between the subspace or manifold model and the true statistics of the source. This dissertation exploits subspace and manifold models as prior information in various signal processing and machine learning tasks.

A near-low-rank Gaussian mixture model measures proximity to a union of linear or affine subspaces. This simple model can effectively capture the signal distribution when each class is near a subspace. This dissertation studies how the pairwise geometry between these subspaces affects classification performance. When model mismatch is vanishingly small, the probability of misclassification is determined by the product of the sines of the principal angles between subspaces. When the model mismatch is more significant, the probability of misclassification is determined by the sum of the squares of the sines of the principal angles. Reliability of classification is derived in terms of the distribution of signal energy across principal vectors. Larger principal angles lead to smaller classification error, motivating a linear transform that optimizes principal angles. This linear transformation, termed TRAIT, also preserves some specific features in each class, being complementary to a recently developed Low Rank Transform (LRT). Moreover, when the model mismatch is more significant, TRAIT shows superior performance compared to LRT.

The manifold model enforces a constraint on the freedom of data variation. Learning features that are robust to data variation is very important, especially when the size of the training set is small. A learning machine with large numbers of parameters, e.g., deep neural network, can well describe a very complicated data distribution. However, it is also more likely to be sensitive to small perturbations of the data, and to suffer from suffer from degraded performance when generalizing to unseen (test) data.

From the perspective of complexity of function classes, such a learning machine has a huge capacity (complexity), which tends to overfit. The manifold model provides us with a way of regularizing the learning machine, so as to reduce the generalization error, therefore mitigate overfiting. Two different overfiting-preventing approaches are proposed, one from the perspective of data variation, the other from capacity/complexity control. In the first approach, the learning machine is encouraged to make decisions that vary smoothly for data points in local neighborhoods on the manifold. In the second approach, a graph adjacency matrix is derived for the manifold, and the learned features are encouraged to be aligned with the principal components of this adjacency matrix. Experimental results on benchmark datasets are demonstrated, showing an obvious advantage of the proposed approaches when the training set is small.

Stochastic optimization makes it possible to track a slowly varying subspace underlying streaming data. By approximating local neighborhoods using affine subspaces, a slowly varying manifold can be efficiently tracked as well, even with corrupted and noisy data. The more the local neighborhoods, the better the approximation, but the higher the computational complexity. A multiscale approximation scheme is proposed, where the local approximating subspaces are organized in a tree structure. Splitting and merging of the tree nodes then allows efficient control of the number of neighbourhoods. Deviation (of each datum) from the learned model is estimated, yielding a series of statistics for anomaly detection. This framework extends the classical {\em changepoint detection} technique, which only works for one dimensional signals. Simulations and experiments highlight the robustness and efficacy of the proposed approach in detecting an abrupt change in an otherwise slowly varying low-dimensional manifold.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Thesis (Ph.D.)--University of Washington, 2016-06

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Thesis (Ph.D.)--University of Washington, 2016-07

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Thesis (Ph.D.)--University of Washington, 2016-08

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Thesis (Ph.D.)--University of Washington, 2016-08

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Thesis (Ph.D.)--University of Washington, 2016-08

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Thesis (Ph.D.)--University of Washington, 2016-08

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Thesis (Ph.D.)--University of Washington, 2016-08

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Thesis (Ph.D.)--University of Washington, 2016-08

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Thesis (Ph.D.)--University of Washington, 2016-08

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Nowadays words like Smart City, Internet of Things, Environmental Awareness surround us with the growing interest of Computer Science and Engineering communities. Services supporting these paradigms are definitely based on large amounts of sensed data, which, once obtained and gathered, need to be analyzed in order to build maps, infer patterns, extract useful information. Everything is done in order to achieve a better quality of life. Traditional sensing techniques, like Wired or Wireless Sensor Network, need an intensive usage of distributed sensors to acquire real-world conditions. We propose SenSquare, a Crowdsensing approach based on smartphones and a central coordination server for time-and-space homogeneous data collecting. SenSquare relies on technologies such as CoAP lightweight protocol, Geofencing and the Military Grid Reference System.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Early definitions of Smart Building focused almost entirely on the technology aspect and did not suggest user interaction at all. Indeed, today we would attribute it more to the concept of the automated building. In this sense, control of comfort conditions inside buildings is a problem that is being well investigated, since it has a direct effect on users’ productivity and an indirect effect on energy saving. Therefore, from the users’ perspective, a typical environment can be considered comfortable, if it’s capable of providing adequate thermal comfort, visual comfort and indoor air quality conditions and acoustic comfort. In the last years, the scientific community has dealt with many challenges, especially from a technological point of view. For instance, smart sensing devices, the internet, and communication technologies have enabled a new paradigm called Edge computing that brings computation and data storage closer to the location where it is needed, to improve response times and save bandwidth. This has allowed us to improve services, sustainability and decision making. Many solutions have been implemented such as smart classrooms, controlling the thermal condition of the building, monitoring HVAC data for energy-efficient of the campus and so forth. Though these projects provide to the realization of smart campus, a framework for smart campus is yet to be determined. These new technologies have also introduced new research challenges: within this thesis work, some of the principal open challenges will be faced, proposing a new conceptual framework, technologies and tools to move forward the actual implementation of smart campuses. Keeping in mind, several problems known in the literature have been investigated: the occupancy detection, noise monitoring for acoustic comfort, context awareness inside the building, wayfinding indoor, strategic deployment for air quality and books preserving.