981 resultados para Computational algorithm


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Computational Intelligence (CI) includes four main areas: Evolutionary Computation (genetic algorithms and genetic programming), Swarm Intelligence, Fuzzy Systems and Neural Networks. This article shows how CI techniques overpass the strict limits of Artificial Intelligence field and can help solving real problems from distinct engineering areas: Mechanical, Computer Science and Electrical Engineering.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper presents a computational tool (PHEx) developed in Excel VBA for solving sizing and rating design problems involving Chevron type plate heat exchangers (PHE) with 1-pass-1-pass configuration. The rating methodology procedure used in the program is outlined, and a case study is presented with the purpose to show how the program can be used to develop sensitivity analysis to several dimensional parameters of PHE and to observe their effect on transferred heat and pressure drop.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper presents a methodology for applying scheduling algorithms using Monte Carlo simulation. The methodology is based on a decision support system (DSS). The proposed methodology combines a genetic algorithm with a new local search using Monte Carlo Method. The methodology is applied to the job shop scheduling problem (JSSP). The JSSP is a difficult problem in combinatorial optimization for which extensive investigation has been devoted to the development of efficient algorithms. The methodology is tested on a set of standard instances taken from the literature and compared with others. The computation results validate the effectiveness of the proposed methodology. The DSS developed can be utilized in a common industrial or construction environment.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Genetic Algorithms (GAs) are adaptive heuristic search algorithm based on the evolutionary ideas of natural selection and genetic. The basic concept of GAs is designed to simulate processes in natural system necessary for evolution, specifically those that follow the principles first laid down by Charles Darwin of survival of the fittest. On the other hand, Particle swarm optimization (PSO) is a population based stochastic optimization technique inspired by social behavior of bird flocking or fish schooling. PSO shares many similarities with evolutionary computation techniques such as GAs. The system is initialized with a population of random solutions and searches for optima by updating generations. However, unlike GA, PSO has no evolution operators such as crossover and mutation. In PSO, the potential solutions, called particles, fly through the problem space by following the current optimum particles. PSO is attractive because there are few parameters to adjust. This paper presents hybridization between a GA algorithm and a PSO algorithm (crossing the two algorithms). The resulting algorithm is applied to the synthesis of combinational logic circuits. With this combination is possible to take advantage of the best features of each particular algorithm.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Several phenomena present in electrical systems motivated the development of comprehensive models based on the theory of fractional calculus (FC). Bearing these ideas in mind, in this work are applied the FC concepts to define, and to evaluate, the electrical potential of fractional order, based in a genetic algorithm optimization scheme. The feasibility and the convergence of the proposed method are evaluated.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Swarm Intelligence (SI) is the property of a system whereby the collective behaviors of (unsophisticated) agents interacting locally with their environment cause coherent functional global patterns to emerge. Particle swarm optimization (PSO) is a form of SI, and a population-based search algorithm that is initialized with a population of random solutions, called particles. These particles are flying through hyperspace and have two essential reasoning capabilities: their memory of their own best position and knowledge of the swarm's best position. In a PSO scheme each particle flies through the search space with a velocity that is adjusted dynamically according with its historical behavior. Therefore, the particles have a tendency to fly towards the best search area along the search process. This work proposes a PSO based algorithm for logic circuit synthesis. The results show the statistical characteristics of this algorithm with respect to number of generations required to achieve the solutions. It is also presented a comparison with other two Evolutionary Algorithms, namely Genetic and Memetic Algorithms.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this paper, a mixed-integer quadratic programming approach is proposed for the short-term hydro scheduling problem, considering head-dependency, discontinuous operating regions and discharge ramping constraints. As new contributions to earlier studies, market uncertainty is introduced in the model via price scenarios, and risk aversion is also incorporated by limiting the volatility of the expected profit through the conditional value-at-risk. Our approach has been applied successfully to solve a case Study based on one of the main Portuguese cascaded hydro systems, requiring a negligible computational time.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This work addresses the signal propagation and the fractional-order dynamics during the evolution of a genetic algorithm (GA). In order to investigate the phenomena involved in the GA population evolution, the mutation is exposed to excitation perturbations during some generations and the corresponding fitness variations are evaluated. Three distinct fitness functions are used to study their influence in the GA dynamics. The input and output signals are studied revealing a fractional-order dynamic evolution, characteristic of a long-term system memory.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Dissertação apresentada na Faculdade de Ciências e Tecnologia da Universidade Nova de Lisboa para obtenção do grau de Mestre em Engenharia Electrotécnica e de Computadores

Relevância:

20.00% 20.00%

Publicador:

Resumo:

IEEE International Symposium on Circuits and Systems, pp. 724 – 727, Seattle, EUA

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The computations performed by the brain ultimately rely on the functional connectivity between neurons embedded in complex networks. It is well known that the neuronal connections, the synapses, are plastic, i.e. the contribution of each presynaptic neuron to the firing of a postsynaptic neuron can be independently adjusted. The modulation of effective synaptic strength can occur on time scales that range from tens or hundreds of milliseconds, to tens of minutes or hours, to days, and may involve pre- and/or post-synaptic modifications. The collection of these mechanisms is generally believed to underlie learning and memory and, hence, it is fundamental to understand their consequences in the behavior of neurons.(...)

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Proceedings of the International Conference on Computational Cybernetics, Vienna University of Technology, August 30 - September 1, 2004

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Dissertação apresentada na Faculdade de Ciências e Tecnologia da Universidade Nova de Lisboa para obtenção do grau de Mestre em Engenharia Informática

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Recent integrated circuit technologies have opened the possibility to design parallel architectures with hundreds of cores on a single chip. The design space of these parallel architectures is huge with many architectural options. Exploring the design space gets even more difficult if, beyond performance and area, we also consider extra metrics like performance and area efficiency, where the designer tries to design the architecture with the best performance per chip area and the best sustainable performance. In this paper we present an algorithm-oriented approach to design a many-core architecture. Instead of doing the design space exploration of the many core architecture based on the experimental execution results of a particular benchmark of algorithms, our approach is to make a formal analysis of the algorithms considering the main architectural aspects and to determine how each particular architectural aspect is related to the performance of the architecture when running an algorithm or set of algorithms. The architectural aspects considered include the number of cores, the local memory available in each core, the communication bandwidth between the many-core architecture and the external memory and the memory hierarchy. To exemplify the approach we did a theoretical analysis of a dense matrix multiplication algorithm and determined an equation that relates the number of execution cycles with the architectural parameters. Based on this equation a many-core architecture has been designed. The results obtained indicate that a 100 mm(2) integrated circuit design of the proposed architecture, using a 65 nm technology, is able to achieve 464 GFLOPs (double precision floating-point) for a memory bandwidth of 16 GB/s. This corresponds to a performance efficiency of 71 %. Considering a 45 nm technology, a 100 mm(2) chip attains 833 GFLOPs which corresponds to 84 % of peak performance These figures are better than those obtained by previous many-core architectures, except for the area efficiency which is limited by the lower memory bandwidth considered. The results achieved are also better than those of previous state-of-the-art many-cores architectures designed specifically to achieve high performance for matrix multiplication.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The container loading problem (CLP) is a combinatorial optimization problem for the spatial arrangement of cargo inside containers so as to maximize the usage of space. The algorithms for this problem are of limited practical applicability if real-world constraints are not considered, one of the most important of which is deemed to be stability. This paper addresses static stability, as opposed to dynamic stability, looking at the stability of the cargo during container loading. This paper proposes two algorithms. The first is a static stability algorithm based on static mechanical equilibrium conditions that can be used as a stability evaluation function embedded in CLP algorithms (e.g. constructive heuristics, metaheuristics). The second proposed algorithm is a physical packing sequence algorithm that, given a container loading arrangement, generates the actual sequence by which each box is placed inside the container, considering static stability and loading operation efficiency constraints.