969 resultados para Composite (steel-concrete) floors
Resumo:
Oxide dispersion strengthened reduced-activation ferritic-martensitic steels are promising candidates for applications in future fusion power plants. Samples of a reduced activation ferritic-martensitic 9 wt.%Cr-oxide dispersion strengthened Eurofer steel were cold rolled to 80% reduction in thickness and annealed in vacuum for 1 h from 200 to 1350 degrees C to evaluate its thermal stability. Vickers microhardness testing and electron backscatter diffraction (EBSD) were used to characterize the microstructure. The microstructural changes were also followed by magnetic measurements, in particular the corresponding variation of the coercive field (H(c)), as a function of the annealing treatment. Results show that magnetic measurements were sensitive to detect the changes, in particular the martensitic transformation, in samples annealed above 850 degrees C (austenitic regime). (C) 2010 Elsevier B.V. All rights reserved.
Resumo:
Copper coatings containing well-distributed Nb particles were obtained by co-electrodeposition in an acidic sulfate bath. Nb particle concentration in the bath was the most significant factor for the incorporation of Nb particles in copper, followed by stirring rate, whereas current density presented low significance. High Nb particle concentration and low stirring rate led to a higher incorporated Nb particle content. The microhardness of the composite layers was higher than that of pure copper deposits obtained under the same conditions due to copper matrix grain refinement and increased with the increase of both current density and incorporated Nb particle volume fraction. The corrosion resistance of Cu-Nb composites in 0.5 wt.% H(2)SO(4) solution at room temperature was higher than that of pure copper and increased with the increase of the Nb content. (C) 2010 Elsevier B.V. All rights reserved.
Resumo:
Glycerol-fatty acid esterification has been conducted with lipase from Penicillium camembertii lipase immobilized on epoxy SiO(2)-PVA in solvent-free media, with the major product being 1-monoglyceride, a useful food emulsifier. For a given set of initial conditions, the influence of reaction was measured in terms of product formation and selectivity using different fatty acids as acyl donors. Results were found to be relatively dependent of the chain length of the fatty acids, showing high specificity for both myristic and palmytic acids attaining final mixture that fulfills the requirements established by the World Health Organization to be used as food emulsifiers. (C) 2010 Elsevier B.V. All rights reserved.
Resumo:
Experiments based on a 2(3) central composite full factorial design were carried out in 200-ml stainless-steel containers to study the pretreatment, with dilute sulfuric acid, of a sugarcane bagasse sample obtained from a local sugar-alcohol mill. The independent variables selected for study were temperature, varied from 112.5A degrees C to 157.5A degrees C, residence time, varied from 5.0 to 35.0 min, and sulfuric acid concentration, varied from 0.0% to 3.0% (w/v). Bagasse loading of 15% (w/w) was used in all experiments. Statistical analysis of the experimental results showed that all three independent variables significantly influenced the response variables, namely the bagasse solubilization, efficiency of xylose recovery in the hemicellulosic hydrolysate, efficiency of cellulose enzymatic saccharification, and percentages of cellulose, hemicellulose, and lignin in the pretreated solids. Temperature was the factor that influenced the response variables the most, followed by acid concentration and residence time, in that order. Although harsher pretreatment conditions promoted almost complete removal of the hemicellulosic fraction, the amount of xylose recovered in the hemicellulosic hydrolysate did not exceed 61.8% of the maximum theoretical value. Cellulose enzymatic saccharification was favored by more efficient removal of hemicellulose during the pretreatment. However, detoxification of the hemicellulosic hydrolysate was necessary for better bioconversion of the sugars to ethanol.
Resumo:
Silicon nitride particles were incorporated to electrolytic copper by co-electrodeposition in acidic sulfate bath, aiming the improvement of its mechanical resistance. Smooth deposits containing well-distributed silicon nitride particles were obtained. The current density did not show significant influence on incorporated particle volume fraction, whereas the variation of particle concentration in the bath had a more pronounced effect. The microhardness of the composite layers was higher than that of pure copper deposits obtained under the same conditions and increased with the increase of incorporated particle volume fraction. The microhardness of composites also increased with the increase of current density due to copper matrix grain refining. The composite coatings were slightly more corrosion resistant than pure copper deposits in 3.5% NaCl solutions.
Resumo:
Al(2)CoO(4)-PbCrO(4) and Al(2)CoO(4)-Pb(2)CrO(5) crystalline powders in different proportions were obtained by the polymeric precursor method. Differential scanning calorimetry (DSC) and thermogravimetry (TG) techniques were used to accurately characterize the distinct thermal events occurring during synthesis. The TG and DSC results revealed a series of overlapping decomposition reactions due to different exothermal events, which were identified as H(2)O and NO(x) elimination and polymer pyrolysis. The X-ray diffraction patterns of the xAl(2)CoO(4)-(1 - x)PbCrO(4) and xAl(2)CoO(4)-(1 - x)Pb(2)CrO(5) mixed compounds, with x = 1, 0.75, 0.5, 0.25 and 0, were obtained in the crystalline form with their respective phases, and proved consistent with the nominal compositions. The synthesis of these two systems yielded nine different colors and shades.
Resumo:
Smooth copper coatings containing well-distributed silicon nitride particles were obtained by co-electrodeposition in acidic sulfate bath. The cathodic current density did not show significant influence on incorporated particle volume fraction, whereas the increase of particle concentration in the bath led to its decrease. The increase of stirring rate increased the amount of embedded particles. The microhardness of the composite layers was higher than that of pure copper deposits obtained under the same conditions due to dispersion-strengthening and copper matrix grain refinement and increased with the increase of incorporated particle volume fraction. The microhardness of composites also increased with the increase of current density due to copper matrix grain refining. The composite coatings presented higher strength but lower ductility than pure copper layers. Pure copper and composite coatings showed the same corrosion resistance in 0.5 wt.% H(2)SO(4) solution at room temperature. (C) 2011 Elsevier B.V. All rights reserved.
Resumo:
This work discusses the resultant microstructure of laser surface treated galvanised steel and the mechanical properties of adhesively bonded surfaces therein. The surface microstructure obtained at laser intensities between 170 and 1700 MW cm 22 exhibit zinc melting and cavity formation. The wavy surface morphology of the treated surface exhibits an average roughness Ra between 1.0 and 1.5 mu m, and a mean roughness depth R(z) of 8.6 mu m. Atomic force microscopic analyses revealed that the R(z) inside the laser shot cavities increased from 68 to 243 nm when the incident laser intensity was increased from 170 to 1700 MW cm(-2). X-ray fluorescence analyses were used to measure Zn coating thicknesses as a function of process parameters. Both X-ray fluorescence and X-ray diffraction analyses demonstrated that the protective coating remains at the material surface, and the steel structure beneath was not affected by the laser treatment. Tensile tests under peel strength conditions demonstrated that the laser treated adhesively joined samples had resistance strength up to 88 MPa, compared to a maximum of only 23 MPa for the untreated surfaces. The maximum deformation for rupture was also greatly increased from 0.07%, for the original surface, to 0.90% for the laser treated surfaces.
Resumo:
The objective of this work is to present the finite element modeling of laminate composite plates with embedded piezoelectric patches or layers that are then connected to active-passive resonant shunt circuits, composed of resistance, inductance and voltage source. Applications to passive vibration control and active control authority enhancement are also presented and discussed. The finite element model is based on an equivalent single layer theory combined with a third-order shear deformation theory. A stress-voltage electromechanical model is considered for the piezoelectric materials fully coupled to the electrical circuits. To this end, the electrical circuit equations are also included in the variational formulation. Hence, conservation of charge and full electromechanical coupling are guaranteed. The formulation results in a coupled finite element model with mechanical (displacements) and electrical (charges at electrodes) degrees of freedom. For a Graphite-Epoxy (Carbon-Fibre Reinforced) laminate composite plate, a parametric analysis is performed to evaluate optimal locations along the plate plane (xy) and thickness (z) that maximize the effective modal electromechanical coupling coefficient. Then, the passive vibration control performance is evaluated for a network of optimally located shunted piezoelectric patches embedded in the plate, through the design of resistance and inductance values of each circuit, to reduce the vibration amplitude of the first four vibration modes. A vibration amplitude reduction of at least 10 dB for all vibration modes was observed. Then, an analysis of the control authority enhancement due to the resonant shunt circuit, when the piezoelectric patches are used as actuators, is performed. It is shown that the control authority can indeed be improved near a selected resonance even with multiple pairs of piezoelectric patches and active-passive circuits acting simultaneously. (C) 2010 Elsevier Ltd. All rights reserved.
Resumo:
The dynamic behavior of composite laminates is very complex because there are many concurrent phenomena during composite laminate failure under impact load. Fiber breakage, delaminations, matrix cracking, plastic deformations due to contact and large displacements are some effects which should be considered when a structure made from composite material is impacted by a foreign object. Thus, an investigation of the low velocity impact on laminated composite thin disks of epoxy resin reinforced by carbon fiber is presented. The influence of stacking sequence and energy impact was investigated using load-time histories, displacement-time histories and energy-time histories as well as images from NDE. Indentation tests results were compared to dynamic results, verifying the inertia effects when thin composite laminate was impacted by foreign object with low velocity. Finite element analysis (FEA) was developed, using Hill`s model and material models implemented by UMAT (User Material Subroutine) into software ABAQUS (TM), in order to simulate the failure mechanisms under indentation tests. (C) 2007 Elsevier Ltd. All rights reserved.
Resumo:
This work presents a statistical study on the variability of the mechanical properties of hardened self-compacting concrete, including the compressive strength, splitting tensile strength and modulus of elasticity. The comparison of the experimental results with those derived from several codes and recommendations allows evaluating if the hardened behaviour of self-compacting concrete can be appropriately predicted by the existing formulations. The variables analyzed include the maximum size aggregate, paste and gravel content. Results from the analyzed self-compacting concretes presented variability measures in the same range than the expected for conventional vibrated concrete, with all the results within a confidence level of 95%. From several formulations for conventional concrete considered in this study, it was observed that a safe estimation of the modulus of elasticity can be obtained from the value of compressive strength; with lower strength self-compacting concretes presenting higher safety margins. However, most codes overestimate the material tensile strength. (C) 2010 Elsevier Ltd. All rights reserved.
Resumo:
The results of a combined experimental program and numerical modeling program to evaluate the behavior of ungrouted hollow concrete blocks prisms under uniaxial compression are addressed. In the numerical program, three distinct approaches have been considered using a continuum model with a smeared approach, namely plane-stress, plane-strain and three-dimensional conditions. The response of the numerical simulations is compared with experimental data of masonry prisms using concrete blocks specifically designed for this purpose. The elastic and inelastic parameters were acquired from laboratory tests on concrete and mortar samples that constitute the blocks and the bed joint of the prisms. The results from the numerical simulations are discussed with respect to the ability to reproduce the global response of the experimental tests, and with respect to the failure behavior obtained. Good agreement between experimental and numerical results was found for the peak load and for the failure mode using the three-dimensional model, on four different sets of block/mortar types. Less good agreement was found for plain stress and plain strain models.
Resumo:
This paper presents the experimental results of 32 axially loaded concrete-filled steel tubular columns (CFT). The load was introduced only on the concrete core by means of two high strength steel cylinders placed at the column ends to evaluate the passive confinement provided by the steel tube. The columns were filled with structural concretes with compressive strengths of 30, 60, 80 and 100 MPa. The outer diameter (D) of the column was 114.3 mm, and the length/diameter (L/D) ratios considered were 3, 5, 7 and 10. The wall thicknesses of the tubes (t) were 3.35 mm and 6.0 mm, resulting in diameter/thickness (D/t) ratios of 34 and 19, respectively. The force vs. axial strain curves obtained from the tests showed, in general, a good post-peak behavior of the CFT columns, even for those columns filled with high strength concrete. Three analytical models of confinement for short concrete-filled columns found in the literature were used to predict the axial capacity of the columns tested. To apply these models to slender columns, a correction factor was introduced to penalize the calculated results, giving good agreement with the experimental values. Additional results of 63 CFT columns tested by other researchers were also compared to the predictions of the modified analytical models and presented satisfactory results. (C) 2009 Elsevier Ltd. All rights reserved.
Resumo:
This paper deals with the application of the lumped dissipation model in the analysis of reinforced concrete structures, emphasizing the nonlinear behaviour of the materials The presented model is based on the original models developed by Cipollina and Florez-Lopez (1995) [12]. Florez-Lopez (1995) [13] and Picon and Florez-Lopez (2000) [14] However, some modifications were introduced in the functions that control the damage evolution in order to improve the results obtained. The efficiency of the new approach is evaluated by means of a comparison with experimental results on reinforced concrete structures such as simply supported beams, plane frames and beam-to-column connections Finally, the adequacy of the numerical model representing the global behaviour of framed structures is investigated and the limits of the analysis are discussed (C) 2009 Elsevier Ltd All rights reserved
Resumo:
This paper presents a study of a specific type of beam-to-column connection for precast concrete structures. Furthermore, an analytical model to determine the strength and the stiffness of the connection, based on test results of two prototypes, is proposed. To evaluate the influence of the strength and stiffness of the connection on the behaviour of the structure, the results of numerical simulations of a typical multi-storey building with semi-rigid connections are also presented and compared with the results using pinned and rigid connections. The main conclusions are: (a) the proposed design model can reasonably evaluate the studied connection strength; (b) the evaluation of strength is more accurate than that of stiffness; (c) for a typical structure, it is possible to increase the number of storeys of the structure from two to four with lower horizontal displacement at the top, and only a small increase of the column base bending moment by replacing the pinned connections with semi-rigid ones; and (d) although there is significant uncertainty in the connection stiffness, the results show that the displacements at the top of the structure, and the column base moments present low susceptibility deviations to this parameter.