962 resultados para Competition for adsorption on the fiber carboxen
Resumo:
Background: The purpose of this experimental study was to evaluate the collagen fiber distribution histologically after phenytoin, cyclosporin, or nifedipine therapy and to correlate it with collagen I and matrix metalloproteinase (MMP)-1 and -2 gene expression levels.Methods: Gingival samples from the canine area were obtained from 12 male monkeys (Cebus apella). The mesial part of each sample was assessed by reverse transcription-polymerase chain reaction, whereas the distal part was processed histologically for picrosirius red and hematoxylin and eosin stainings, as well as for collagen IV immunostaining. One week after the first biopsy, the animals were assigned to three groups that received daily oral dosages of cyclosporin, phenytoin, or nifedipine for 120 days. Additional gingival samples were obtained on days 52 and 120 of treatment from two animals from each group on the opposite sides from the first biopsies.Results: Picrosirius red staining showed a predominance of mature collagen fibers in the control group. Conversely, there was an enlargement of areas occupied by immature collagen fibers in all groups at days 52 and 120, which was not uniform over each section. There was a general trend to lower levels of MMP-1 gene expression on day 52 and increased levels on day 120. Phenytoin led to increased levels of MMP-2 and collagen I gene expression on day 120, whereas the opposite was observed in the nifedipine group.Conclusion: Cyclosporin, phenytoin, and nifedipine led to phased and drug-related gene expression patterns, resulting in impaired collagen metabolism, despite the lack of prominent clinical signs.
Resumo:
The aim of this study was to conduct a histological assessment of the effect of photodynamic therapy (PDT) on the repairing of third-degree-burn wounds made on the backs of rats with a heated scalpel. Ninety-six rats were divided into groups: G1, control (n = 24), cold scalpel; G2, burned, heated scalpel (n = 24); G3, low-level laser therapy (LLLT) (n = 24), on burns; and G4, photodynamic therapy (PDT) (n = 24), toluidine-O blue (100 A mu g/ml) and LLLT treatment on burns. The laser (685 nm) was applied in continuous mode, 50 mW, 4.5 J/cm(2), contact mode at nine points (9 s/point). Eight animals in each group were killed at 3 days, 7 days or 14 days after surgery, and tissue specimens containing the whole wounded area were removed and processed for histological analysis; the results were statistically analyzed with Kruskal-Wallis and Dunn's tests (P < 0.05). The results demonstrated significant differences between G2 and G3, and between G2 and G4, at both 3 days and 7 days, with regard to acute inflammation scores; G1 and G2 showed significant differences when compared with G4 at 3 days, with regard to neo-angiogenesis scores; G1 and G2 were statistically different from G3 and G4 at both 3 days and 7 days, with regard to re-epithelization scores; G2 showed statistically significant differences when compared with G3 and G4 with regard to collagen fiber scores at 7 days. LLLT and PDT acted as a biostimulating coadjuvant agent, balancing the undesirable effect of the burn on the wound healing process, acting mainly in the early healing stages, hastening inflammation and increasing collagen deposition.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
The effect of UV-C irradiation of the TPS and PCL biocomposites with sisal bleached fibers was investigated. The biocomposite was UV-C irradiated at room temperature under air atmosphere. The structural and morphological changes produced when the films were exposed to UV irradiation for 142 h, were monitored using Scanning Electron Microscopy (SEM), Mechanical Tensile Tests, Differential Scanning Calorimetry (DSC), X-ray diffraction, Thermogravimetric analysis (TGA), and Fourier transform infra-red analysis (FTIR). Addition of 5-10% fibers in composites exhibited improved mechanical and thermal properties attributed to more efficient dispersibility of fiber in the matrix and good compatibility between fibers and the matrix polymer, however, after irradiated, the tensile properties decreased due to chain scission. The samples of irradiated PCL and IFS showed crystallinity increase, whereas the blend and composites showed a decrease in crystallinity. The DSC and X-ray diffraction studies suggested interaction between polymers in the blend via carboxyl groups in thermoplastic starch-PCL and hydroxyl groups in fibers. (C) 2011 Elsevier Ltd. All rights reserved.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
This study addressed the effects of nandrolone decanoate (ND) on contractile properties and muscle fiber characteristics of rats submitted to swimming. Male Wistar rats were grouped in sedentary (S), swimming (Sw), sedentary+ND (SND), and swimming+ND (SwND), six animals per group. ND (3 mg/kg) was injected (subcutaneously) 5 days/week, for 4 weeks. Swimming consisted of 60-min sessions (load 2%), 5 days/week, for 4 weeks. After this period, the sciatic nerve extensor digitorum longus (EDL) muscle was isolated for myographic recordings. Fatigue resistance was assessed by the percent (%) decline of 180 direct tetanic contractions (30 Hz). Safety margin of synaptic transmission was determined from the resistance to the blockade of indirectly evoked twitches (0.5 Hz) induced by pancuronium (5 to 9 x 10(-7) M). EDL muscles were also submitted to histological and histochemical analysis (haematoxylin-eosin (HE); nicotinamide adenine dinucleotide-tetrazolium reductase (NADH-TR)). Significant differences were detected by two-way ANOVA (p<0.05). ND did not change body mass, fatigue resistance or kinetic properties of indirect twitches in either sedentary or swimming rats. In contrast, ND reduced the safety margin of synaptic transmission in sedentary animals (SND=53.3+/-4.7% vs. S=75.7+/-2.0%), but did not affect the safety margin in the swimming rats (SwND=75.81+/-3.1% vs. Sw=71.0+/-4.0%). No significant difference in fiber type proportions or diameters was observed in EDL muscle of any experimental group. These results indicate that ND does not act as an ergogenic reinforcement in rats submitted to 4 weeks of swimming. on the other hand, this study revealed an important toxic effect of ND, that it reduces the safety margin of synaptic transmission in sedentary animals. Such an effect is masked when associated with physical exercise. (C) 2004 Elsevier B.V. All rights reserved.
Resumo:
The influence of hygrothermal conditioning on mechanical properties of Carall laminates have been investigated by tensile and compression tests. The environmental factors can limit the applications of composites by deteriorating the mechanical properties during service. The importance of temperature at the time of conditioning plays an important role in environmental degradation of such composite materials. In this work, the results show that for carbon fiber/epoxy composites tensile and compression values decrease after hygrothermal conditioning. However, the changes on mechanical properties of Carall are negligible, regardless the hygrothermal conditioning.
Resumo:
The effects of La2O3 on the properties of (Zn, Co, Ta) doped SnO2 varistors were investigated in this study. The samples with different La2O3 concentrations were sintered at 1400 degrees C for 2 h and their properties were characterized by XRD, SEM, I-V and impedance spectroscopy. The grain size was found to decrease from 13 pm to 9 gm with increasing La2O3 content. The addition of rare earth element leads to increase the nonlinear coefficient and the breakdown voltage. The enhancement was expected to arise from the possible segregation of lanthanide ion due to its larger ionic radius to the grain boundaries, thereby modifying its electrical characteristics. Furthermore, the dopants such as La may help in the adsorption of O' to O '' at the grain boundaries characteristics. (c) 2006 Elsevier B.V. All rights reserved.
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Silica gels were preparated from fixed proportion mixtures of tetraethoxysilane, water and hydrocloric acid, using either ultrasound stimulation (US) or conventional method (CO) in the hydrolysis step of the process. Wet gets were obtained with the same silica volume concentration and density. According to small-angle X-ray scattering, the structure of the wet gels can be described as mass fractal structures with mass fractal dimension D = 2.20 in a length scale xi = 7.9 nm, in the case of wet gels US, and D = 2.26 in a length scale 6.9 nm, in the case of wet gels CO. The mass fractal characteristics of the wet gels US and CO account for the different structures evolved in the drying of the gels US and CO in the obtaining of xerogels and aerogels. The pore structure of the dried gels was studied by nitrogen adsorption as a function of the temperature. Aerogels (US and CO) present high porosity with pore size distribution (PSD) curves in the mesopore region while xerogels (US and CO) present minor porosity with PSD curves mainly in the micropore region. The dried gels US (aerogels and xerogels) generally present pore volume and specific surface area greater than the dried gels CO. The mass fractal structure of the aerogels has been studied from an approach based on the PSD curves exclusively. (c) 2005 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.