437 resultados para Compósito polimérico


Relevância:

10.00% 10.00%

Publicador:

Resumo:

The drilling of wells for petroleum extraction generates rocks and soils fragments, among other residues. These fragments are denominated petroleum drilling gravel or simply petroleum drilling residue. On the sites of onshore exploration are formed big deposits of drilling gravel, an expensive final destination material. This work aims at evaluating the addition of drilling residue to a lateritic soil, as composite material, for construction of compacted fills for earth work projects. Soil and residue were evaluated by X-ray diffraction (XRD) and X-ray fluorescence (XRF) and by laboratory tests traditionally used in soil mechanics, as particle-size analysis of soils, determination of liquid and plasticity indexes and compaction test. After soil and residue characterization, soil-residue mixtures were studied, using dosages of 2,5%, 5%, 10%, and 15% of residue in relation to the dry soil mass. These mixtures were submitted to compaction test, CBR, direct shear test and consolidation test. The test results were compared to the current legislation of DNIT for compacted fill construction. The results showed that the mixtures presented the minimal necessary parameters, allowing, from the point of view of geotechnical analysis, the use of these mixtures for construction of compacted fills

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Government efforts have found some obstacles in achieving a better infrastructure regarding environmental preservation requirements. There is a need to develop new techniques that leave the big exploitation of environmental resources. This study measures the evaluation of the behavior of a composite formed by lateritic soil mix and tire buffings. In this way, a road embankment model was developed to assess the bearing capacity of the composite. This study measured the load capacity of the composites with 0%, 10%, 20% and 40% rubber mixed with the soil, by weight, iron plate loading tests on a simulated embankment in a metal box of 1.40 x 1.40 x 0.80 m. After four compaction layers of the composite, a plate test was performed, and then stress-settlement curves were obtained for the material. The embankments with 20% and 40% rubber content was difficult to compact. There was a significant reduction in the load capacity of the soil-plate system with increasing rubber content. The composite with the lowest loss of bearing capacity in relation to the reference soil was the one with a χ = 10%. In the load capacity tests, another aspect noted was the bearing capacity in terms of CBR. The results also show a gradual decrease in bearing capacity in the composites as with the rubber incorporation content increases. As in the plate load tests, the composite that had the lower bearing capacity loss was also that with 10% content.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Produced water is considered the main effluent of the oil industry, due to their increased volume in mature fields and its varied composition. The oil and grease content (TOG) is the main parameter for the final disposal of produced water. In this context, it is of great significance to develop an alternative method based on guar gum gel for the treatment of synthetic produced water, and using as the differential a polymer having high hydrophilicity for clarifying waters contaminated with oil. Thus, this study aims to evaluate the efficiency of guar gum gels in the remotion of oil from produced water. Guar gum is a natural polymer that, under specific conditions, forms three-dimensional structures, with important physical and chemical properties. By crosslinking the polymer chains by borate ions in the presence of salts, the effect salting out occurs, reducing the solubility of the polymer gel in water. As a result, there is phase separation with the oil trapped in the collapsed gel. The TOG was quantified from the spectroscopy in the ultraviolet and visible region. The system was proven to be highly efficient in the removal of dispersed oil from water produced synthetically, reaching removal percentages above 90%.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Composite NiO-C0.9Gd0.1O1.95 (NiO-GDC), one of the materials most used for the manufacture of anodes of Cells Solid Oxide Fuel (SOFC) currently, were obtained by a chemical route which consists in mixing the precursor solution of NiO and CGO phases obtained previously by the Pechini method. The nanopowders as-obtained were characterized by thermal analysis techniques (thermogravimetry and Differential Scanning Calorimetry) and calcined materials were evaluated by X-ray diffraction (XRD). Samples sintered between 1400 and 1500 ° C for 4 h were characterized by Archimedes method. The effects of the composition on the microstructure and electrical properties (conductivity and activation energy) of the composites sintered at 1500 ° C were investigated by electron microscopy and impedance spectroscopy (between 300 and 650 ° C in air). The refinement of the XRD data indicated that the powders are ultrafine and the crystallite size of the CGO phase decreases with increasing content of NiO. Similarly, the crystallite of the NiO phase tends to decrease with increasing concentration of CGO, especially above 50 wt % CGO. Analysis by Archimedes shows a variation in relative density due to the NiO content. Densities above 95% were obtained in samples containing from 50 wt % NiO and sintered between 1450 and 1500 °C. The results of microscopy and impedance spectroscopy indicate that from 30-40 wt.% NiO there is an increase in the number of contacts NiO - NiO, activating the electronic conduction mechanism which governs the process of conducting at low temperatures (300 - 500 °C). On the other hand, with increasing the measuring temperature the mobility of oxygen vacancies becomes larger than that of the electronic holes of NiO, as a result, the high temperature conductivity (500-650 ° C) in composites containing up to 30-40 wt.% of NiO is lower than that of CGO. Variations in activation energy confirm change of conduction mechanism with the increase of the NiO content. The composite containing 50 wt. % of each phase shows conductivity of 19 mS/cm at 650 °C (slightly higher than 13 mS/cm found for CGO) and activation energy of 0.49 eV.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This thesis develops a new technique for composite microstructures projects by the Topology Optimization process, in order to maximize rigidity, making use of Deformation Energy Method and using a refining scheme h-adaptative to obtain a better defining the topological contours of the microstructure. This is done by distributing materials optimally in a region of pre-established project named as Cell Base. In this paper, the Finite Element Method is used to describe the field and for government equation solution. The mesh is refined iteratively refining so that the Finite Element Mesh is made on all the elements which represent solid materials, and all empty elements containing at least one node in a solid material region. The Finite Element Method chosen for the model is the linear triangular three nodes. As for the resolution of the nonlinear programming problem with constraints we were used Augmented Lagrangian method, and a minimization algorithm based on the direction of the Quasi-Newton type and Armijo-Wolfe conditions assisting in the lowering process. The Cell Base that represents the composite is found from the equivalence between a fictional material and a preescribe material, distributed optimally in the project area. The use of the strain energy method is justified for providing a lower computational cost due to a simpler formulation than traditional homogenization method. The results are presented prescription with change, in displacement with change, in volume restriction and from various initial values of relative densities.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Although efficient from a technical point of view, mortar layers that make up the traditional masonry coating (slurry mortar, plaster and plaster) have to be in contradiction with the new construction technologies and more efficient methods of consumption and work rationalization. From an environmental point of view, the recovery of waste into new composites for the building has been a growing strand of studies in the scientific community, may prove to be a cost-effective solution in some cases. Thus, this research proposes the development of a mortar Decorative Coating Monolayer (RDM), for use in facades, produced on site, incorporating tempered glass waste (RVT) in the cement matrix, as a partial substitute for aggregate. Therefore, we adopted the binder respect / aggregate of 1: 6 (by volume), consistency index 250mm ± 20, sand substitution levels of glass waste 20%, 50% and 80% and relative water / cement varied in many traits. Two additives were used, a polymer, styrene-butadiene-based, and other chemical, besides mineral and silica fume inorganic pigment in colors red, yellow and blue. Mechanical tests were carried out on fresh pasta and hardened, as well as for the applied coating on masonry, so as to demonstrate the feasibility of the material. In addition, it verified the adequacy of the RDM built environment by means of thermal tests. The results demonstrated the feasibility of the proposed RDM with significantly higher values when compared to norms, especially the dash-added replacement content of 20% and addition of pigment in red. Therefore, the study shows the scientific community as an incentive to the use of technological innovations in construction, increasing the range of alternatives available for housing production, with the proposition of a material that achieves the desired functionality and obtain environmental gain, and may be adopted on construction sites as an alternative industrialized mortars.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This work consists basically in the elaboration of an Artificial Neural Network (ANN) in order to model the composites materials’ behavior when submitted to fatigue loadings. The proposal is to develop and present a mixed model, which associate an analytical equation (Adam Equation) to the structure of the ANN. Given that the composites often shows a similar behavior when subject to float loadings, this equation aims to establish a pre-defined comparison pattern for a generic material, so that the ANN fit the behavior of another composite material to that pattern. In this way, the ANN did not need to fully learn the behavior of a determined material, because the Adam Equation would do the big part of the job. This model was used in two different network architectures, modular and perceptron, with the aim of analyze it efficiency in distinct structures. Beyond the different architectures, it was analyzed the answers generated from two sets of different data – with three and two SN curves. This model was also compared to the specialized literature results, which use a conventional structure of ANN. The results consist in analyze and compare some characteristics like generalization capacity, robustness and the Goodman Diagrams, developed by the networks.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

O presente estudo aborda a utilização de carvão ativado comercial na remoção de ácidos húmicos em meio aquoso. O objetivo principal é desenvolver e caracterizar materiais carbonáceos visando aplicações de remoção de ácidos húmicos em meio aquoso por processos de adsorção e oxidação. Testes de remoção do poluente foram desenvolvidos com a utilização do carvão comercial, carvão modificado a partir de tratamentos ácidos e compósito confeccionado com a impregnação de ferro no carvão. Espumas de carbono com dispersões de carvão ativado e óxidos de ferro também foram desenvolvidas buscando aplicações de remoção do poluente através de processos eletroquímicos. Os resultados das caracterizações demonstraram ganho de área superficial a partir do tratamento ácido, a presença dispersa de ferro em todo carvão na forma de fase maghemita com a introdução do metal, e ganho de estabilidade eletroquímica na espuma, com a presença de dispersões de carvão ativados impregnados com ferro. O processo oxidativo Fenton, foto assistido por radiação UV, demonstrou maior eficiência para remoção do ácido húmico em água.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Composites based on alumina (Al2O3), tungsten carbide (WC) and cobalt (Co) exhibit specific properties such as low density, high oxidation resistance, high melting point and high chemical inertia. That composite shows to be a promising material for application in various fields of engineering. In this work, the mechanical properties of the composite (Al2O3 – WC – Co), particularly density and hardness, were evaluated according to the effects of the variables of powder processing parameters, green compact and sintered. Powder composites with the composition of 80 wt% Al2O3, 18 wt% WC and 2 wt% Co were processed by high energy ball milling in a planetary mill for 50 hours as well as mixed by manual mixing in a glass vessel with the same proportion. Samples were collected (2, 10, 20, 30, 40 and 50 hours) during the milling process. Then, the powders were compacted in a cylindrical die with 5 mm in diameter in a uniaxial press with pressures of 200 and 400 MPa. The sintering was in two stages: first, the solid phase sintering was performed at 1126 and 1300 °C for 1 hour with a heating rate of 10 °C/min in a resistive furnace under argon atmosphere for green samples compacted in 200 and 400 MPa; the second sintering was performed on dilatometer in solid phase at 1300 °C for green sample compacted in 200 MPa, another sintering also was performed on dilatometer, this time in liquid phase at 1550 °C for green samples compacted in 200 and 400 MPa, with the same parameters used in resistive furnace. The raw materials were characterized by X – ray diffraction (XRD), X – ray fluorescence (XRF), scanning electron microscopy (SEM), energy dispersive spectroscopy (EDS) and laser particlemeter. The sintered samples were subjected to microhardness testing. The results showed that high energy milling achieved to the objectives regarding the particle size and the dispersion of composite phases. However, the hardness did not achieve to significant results, this is an indication that the composite has low fracture toughness.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Composites based on alumina (Al2O3), tungsten carbide (WC) and cobalt (Co) exhibit specific properties such as low density, high oxidation resistance, high melting point and high chemical inertia. That composite shows to be a promising material for application in various fields of engineering. In this work, the mechanical properties of the composite (Al2O3 – WC – Co), particularly density and hardness, were evaluated according to the effects of the variables of powder processing parameters, green compact and sintered. Powder composites with the composition of 80 wt% Al2O3, 18 wt% WC and 2 wt% Co were processed by high energy ball milling in a planetary mill for 50 hours as well as mixed by manual mixing in a glass vessel with the same proportion. Samples were collected (2, 10, 20, 30, 40 and 50 hours) during the milling process. Then, the powders were compacted in a cylindrical die with 5 mm in diameter in a uniaxial press with pressures of 200 and 400 MPa. The sintering was in two stages: first, the solid phase sintering was performed at 1126 and 1300 °C for 1 hour with a heating rate of 10 °C/min in a resistive furnace under argon atmosphere for green samples compacted in 200 and 400 MPa; the second sintering was performed on dilatometer in solid phase at 1300 °C for green sample compacted in 200 MPa, another sintering also was performed on dilatometer, this time in liquid phase at 1550 °C for green samples compacted in 200 and 400 MPa, with the same parameters used in resistive furnace. The raw materials were characterized by X – ray diffraction (XRD), X – ray fluorescence (XRF), scanning electron microscopy (SEM), energy dispersive spectroscopy (EDS) and laser particlemeter. The sintered samples were subjected to microhardness testing. The results showed that high energy milling achieved to the objectives regarding the particle size and the dispersion of composite phases. However, the hardness did not achieve to significant results, this is an indication that the composite has low fracture toughness.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In this work, the oxidation and mineralization of paracetamol, based in an advanced oxidative process promoted by heterogeneous photocatalysis, was evaluated. The action of two photocatalysts (titanium dioxide, and a composite based on the association between titanium dioxide and zinc phthalocyanine dye) was studied. First of all, experiments in laboratory scale were performed using as radiation font a 400 W high pressure mercury lamp. The mineralization of paracetamol, promoted by both photocatalysts, was evaluated working with 4L of solution containing 10 mg L-1 of paracetamol and 100 mg L-1 of photocatalyst. To find the best experimental conditions, the influence of hydrogen peroxide concentration and pH was evaluated for the reactions. The best results for the reactions in laboratory scale was obtained using 33,00 mg L-1 of hydrogen peroxide in natural pH (6,80). Under these conditions, 100% oxidation was reached in just 40 minutes of reaction using TiO2 P25, while the mineralization was 78%. Using the composite, the mineralization was 63% in 2 hours of reaction and a oxidation of almost 100% was reached after 60 minutes. A CPC reactor (compound parabolic concentrator) was employed in the expanded work scale, using the sun as irradiation source. In this case the experiments were performed using 50 L of aqueous solution containing 10 mg L-1 of paracetamol and 100 mg L-1 of photocatalyst. The assays were done at pH 3,00 and natural pH (6,80). The used concentration of hydrogen peroxide was 33,00 mg L-1, adopted after laboratory scale studies. The reaction at pH 3,00 shows to be more advantageous, since under natural pH (6,80), the use of deionized water was necessary to prepare the solutions, probably because the deleterious action of carbonate ions, known hydroxyl radical scavengers. Using solar irradiation, the reaction mediated by the composite was more efficient when compared with the assays under laboratory scale since the composite presents the advantage of promoting a better use of visible radiation. Under these conditions, the mineralization increased from 40% to 56% under pH 3,00. At natural pH the oxidation occurred more slowly and the mineralization decreased from 56% to 50%. Thus, the use of pH 3,00 will be more interesting in real scale applications, even if it is necessary the pH correction before the discard of the treated effluent to the environment.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Chemical modification of polymer matrices is an alternative way to change its surface properties. The introduction of sulfonic acid groups in polymer matrices alter properties such as adhesion, wettability, biocampatibility, catalytic activity, among others. This paper describes the preparation of polymeric solid acid based on the chemical modification of poly (1-fenietileno) (PS) and Poly (1-chloroethylene) (PVC) by the introduction of sulfonic acid groups and the application of these polymers as catalysts in the esterification reaction of oleic acid with methanol. The modified materials were characterized by Infrared Spectroscopy, Elemental Analysis and titration acid-base of the acid groups. All techniques confirmed the chemical changes and the presence of sulfur associated with sulfonic acid groups or sulfates. The modified polymers excellent performance in the esterification reaction of oleic acid with methanol a degree of conversion higher than 90% for all investigated polymers (modified PS and PVC (5% w / w)), with a mass ratio of oleic acid: methanol 1:10 to 100 ° C. The best performance was observed for the modified PVC catalyst (PVCS) which showed low degree of swelling during the reactions is recovered by filtration different from that observed for polystyrene sulfonate (PSS). Given these facts, the PVCS was employed as a catalyst in the esterification reaction of oleic acid in different times and different temperatures to obtain the kinetic parameters of the reaction. Experimental data show a great fit for pseudo-homogeneous model of second order and activation energy value of 41.12 kJ mol -1, below that found in the literature for the uncatalyzed reaction, 68.65 kJ mol -1 .The PVCS exhibits good catalytic activity for 3 times of reuse, with a slight decrease in the third cycle, but with a conversion of about 78%. The results show that solid polymeric acid has good chemical stability for the application in esterification reaction of commercial importance with possible application in the biodiesel production. The advantages in use of this system are the increased reaction rate at about 150 times, at these test conditions, the replacement of sulfuric acid as a catalyst for this being the most corrosive and the possibility of reuse of the polymer for several cycles.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Oral route of administration is considered to be the most comfortable, safe and greater adaptation for patients. But, oral route presents some disadvantages such as drugs bioavailability and side effects on the stomach. Some technologies are studied to soften and/or resolve these problems, such as coating with polymeric films, which are able to protect the pharmaceutical form of the acid stomachic environment and to act in the drug release, and mucoadhesive systems, which allow the pharmaceutical form remains a greater time interval in the intestine, increasing the effectiveness of the drug. Cellulose triacetate (CTA) films were produced from cellulose extracted from sugar cane bagasse. The films were prepared with different morphologies (with and without water, acting as non-solvent) and concentrations (3, 6.5 and 10%) of CTA and characterized using scanning electron microscopy (SEM), water vapor permeability (WVP), puncture resistance (PR), enzymatic digestion (DE), and mucoadhesive force evaluation (MF). Microscopy showed the formation of symmetric and asymmetric morphologies. WVP data showed that more concentrated films have higher values for WVP; moreover, asymmetric films had higher values than symmetric films. PR measurements showed that symmetric membranes are more resistant than asymmetric ones. More concentrated films were also more puncture resistant, except for symmetric membranes with CTA concentrations of 6.5 and 10% that did not show significant differences. All of the films presented large mucoadhesive capacities independent of their morphology and CTA concentration. From the results of WVP and RP, a symmetric filme with 6.5% CTA showed better ability and mechanical resistance, therefore, was selected to serve as coating of gellan gum (GG) particles incorporating ketoprofen (KET), which was confirmed by SEM. The selected film presented low values in measurements of the swelling index (SI) and in a dissolution test (DT). TGA analysis showed that the CTA coating does not influence the thermal stability of the particles and there is no incompatibility evidence between CTA, GG and KET. Coated particles released 100% of the ketoprofen in 24 h, while uncoated particles released the same amount in 4 h. The results of this study highlight the potential of CTA in the development of new controlled oral delivery systems.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A presente dissertação incide sobre o estudo dos efeitos do confinamento com materiais compósitos de polímeros reforçados com fibras de carbono (CFRP) em pilares de estruturas de betão armado. A motivação para este estudo surge da necessidade de aprofundar conhecimentos acerca do comportamento dos pilares de betão reforçados por confinamento com CFRP, uma vez que a sua aplicação apresenta uma crescente importância, por exemplo, para aumento da resistência e da ductilidade de estruturas de betão armado. Fez-se, inicialmente, uma breve revisão das técnicas de reforço convencionais utilizadas em pilares de betão armado, com ênfase no reforço exterior com polímeros reforçados com fibras. A elevada resistência à tração, à corrosão e à fadiga, o baixo peso volúmico, a versatilidade e a diversidade dos sistemas comercializados com CFRP tornam este material muito competitivo para este tipo de aplicação. Na sequência desse estudo, realizou-se uma revisão bibliográfica acerca dos modelos de comportamento que permitem prever o desempenho de pilares de betão confinados com CFRP, sujeitos a esforços de compressão. Como forma de análise desses modelos, desenvolveu-se uma ferramenta numérica em ambiente Mathworks - Matlab R2015a, que permitiu a obtenção e posterior comparação dos diagramas de tensão-extensão descritos pelos modelos desenvolvidos por Manfredi e Realfonzo (2001), Ferreira (2007) e Wei e Wu (2011). Por fim, comparam-se os resultados experimentais de Paula (2003) e de Rocca (2007) com os dos modelos constitutivos referidos anteriormente, analisando-se também a influência de vários fatores na eficácia do confinamento, tais como o boleamento, o número de camadas de CFRP e a geometria da secção transversal. Foram ainda comparados e discutidos resultados relativos ao confinamento parcial de pilares. Os resultados obtidos indicam que os modelos analíticos representam relativamente bem o andamento das curvas do betão confinado para secções circulares, quadradas e retangulares, verificando-se as principais discrepâncias nestas duas últimas tipologias de secção transversal, dada a dificuldade associada à quantificação de parâmetros associados ao seu comportamento (por exemplo, boleamento de arestas). No entanto, verificou-se igualmente que com um adequado boleamento de arestas (e consequente aumento da relação entre o raio de canto e a largura da secção de betão), bem como com um aumento do número de camadas de material compósito, é possível aumentar a tensão resistente e a extensão axial na rotura do betão à compressão.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Atualmente, a utilização e as diversas aplicações de materiais poliméricos seguem tendências crescentes, pelo que se torna necessário aprofundar a compreensão do seu comportamento e funcionalidades. Neste contexto, na presente dissertação analisa-se a fabricação e características de rolamentos poliméricos para a suspensão automóvel. Estes rolamentos visam a substituição dos clássicos rolamentos metálicos. Esta substituição tem por objetivos garantir a melhoria do funcionamento dos rolamentos, bem como o seu usufruto, contribuindo para um maior conforto e segurança dos passageiros e para uma redução do peso do veículo, com consequente diminuição do consumo do combustível e melhoria da eficiência. Sendo o poliacetal (POM) e a poliamida (PA) considerados polímeros de alto desempenho, estes polímeros reúnem boas características para aplicação na fabricação de dispositivos com funcionalidades exigentes como é o caso dos rolamentos. O presente trabalho aborda o estudo de algumas das suas propriedades, de modo a obter informações relevantes quanto à respetiva aplicação em rolamentos de suspensão, tendo como foco principal a análise da matéria-prima utilizada. Deste modo, alteraram-se as formulações variando-se os teores de material virgem e reciclado, estudou-se o ser comportamento mecânico, reológico e térmico: fizeram-se análises reológicas através do estudo do MFI a fim de se obterem informações complementares ao estudo mecânico, realizaram-se análises térmicas para avaliar a possibilidade de degradação térmica do material e, no caso da PA66-30GF, recorreu-se à microscopia eletrónica de varrimento para se estudar os aspetos microestruturais deste compósito reforçado com fibra de vidro. Adicionalmente, procedeu-se à análise da rugosidade superficial dos componentes dos rolamentos e quantificou-se o torque dos mesmos. A partir dos estudos anteriores, foi possível concluir que o POM apresenta um comportamento mecânico estável mesmo utilizando uma formulação com 100% de material reciclado. Este comportamento não se verificou na PA6630GF, dado que as suas propriedades mecânicas são afetadas de forma significativa pelo teor de reciclado na formulação. Com o estudo do torque determinou-se o valor limite do momento de torsão do rolamento que garante o seu bom funcionamento e eficácia.