864 resultados para Communication networks


Relevância:

30.00% 30.00%

Publicador:

Resumo:

FDDI (Fibre Distributed Data Interface) is a 100 Mbit/s token ring network with two counter rotating optical rings. In this paper various possible faults (like lost token, link failures, etc.) are considered, and fault detection and the ring recovery process in case of a failure and the reliability mechanisms provided are studied. We suggest a new method to improve the fault detection and ring recovery process. The performance improvement in terms of station queue length and the average delay is compared with the performance of the existing fault detection and ring recovery process through simulation. We also suggest a modification for the physical configuration of the FDDI networks within the guidelines set by the standard to make the network more reliable. It is shown that, unlike the existing FDDI network, full connectivity is maintained among the stations even when multiple single link failures occur. A distributed algorithm is proposed for link reconfiguration of the modified FDDI network when many successive as well as simultaneous link failures occur. The performance of the modified FDDI network under link failures is studied through simulation and compared with that of the existing FDDI network.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This paper considers the problem of spectrum sensing, i.e., the detection of whether or not a primary user is transmitting data by a cognitive radio. The Bayesian framework is adopted, with the performance measure being the probability of detection error. A decentralized setup, where N sensors use M observations each to arrive at individual decisions that are combined at a fusion center to form the overall decision is considered. The unknown fading channel between the primary sensor and the cognitive radios makes the individual decision rule computationally complex, hence, a generalized likelihood ratio test (GLRT)-based approach is adopted. Analysis of the probabilities of false alarm and miss detection of the proposed method reveals that the error exponent with respect to M is zero. Also, the fusion of N individual decisions offers a diversity advantage, similar to diversity reception in communication systems, and a tight bound on the error exponent is presented. Through an analysis in the low power regime, the number of observations needed as a function of received power, to achieve a given probability of error is determined. Monte-Carlo simulations confirm the accuracy of the analysis.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Wireless mesh networks with multi-beam capability at each node through the use of multi-antenna beamforming are becoming practical and attracting increased research attention. Increased capacity due to spatial reuse and increased transmission range are potential benefits in using multiple directional beams in each node. In this paper, we are interested in low-complexity scheduling algorithms in such multi-beam wireless networks. In particular, we present a scheduling algorithm based on queue length information of the past slots in multi-beam networks, and prove its stability. We present a distributed implementation of this proposed algorithm. Numerical results show that significant improvement in delay performance is achieved using the proposed multi-beam scheduling compared to omni-beam scheduling. In addition, the proposed algorithm is shown to achieve a significant reduction in the signaling overhead compared to a current slot queue length approach.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Distributed Space-Time Block Codes (DSTBCs) from Complex Orthogonal Designs (CODs) (both square and non-square CODs other than the Alamouti design) are known to lose their single-symbol ML decodable (SSD) property when used in two-hop wireless relay networks using the amplify and forward protocol. For such a network, a new class of high rate, training-symbol embedded (TSE) SSD DSTBCs are proposed from TSE-CODs. The constructed codes include the training symbols within the structure of the code which is shown to be the key point to obtain high rate along with the SSD property. TSE-CODs are shown to offer full-diversity for arbitrary complex constellations. Non-square TSE-CODs are shown to provide better rates (in symbols per channel use) compared to the known SSD DSTBCs for relay networks when the number of relays is less than 10. Importantly, the proposed DSTBCs do not contain zeros in their codewords and as a result, antennas of the relay nodes do not undergo a sequence of switch on and off transitions within every codeword use. Hence, the proposed DSTBCs eliminate the antenna switching problem.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Cooperative communication using rateless codes, in which the source transmits an infinite number of parity bits to the destination until the receipt of an acknowledgment, has recently attracted considerable interest. It provides a natural and efficient mechanism for accumulating mutual information from multiple transmitting relays. We develop an analysis of queued cooperative relay systems that combines the communication-theoretic transmission aspects of cooperative communication using rateless codes over Rayleigh fading channels with the queuing-theoretic aspects associated with buffering messages at the relays. Relay cooperation combined with queuing reduces the message transmission times and also helps distribute the traffic load in the network, which improves throughput significantly.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We consider a wireless sensor network whose main function is to detect certain infrequent alarm events, and to forward alarm packets to a base station, using geographical forwarding. The nodes know their locations, and they sleep-wake cycle, waking up periodically but not synchronously. In this situation, when a node has a packet to forward to the sink, there is a trade-off between how long this node waits for a suitable neighbor to wake up and the progress the packet makes towards the sink once it is forwarded to this neighbor. Hence, in choosing a relay node, we consider the problem of minimizing average delay subject to a constraint on the average progress. By constraint relaxation, we formulate this next hop relay selection problem as a Markov decision process (MDP). The exact optimal solution (BF (Best Forward)) can be found, but is computationally intensive. Next, we consider a mathematically simplified model for which the optimal policy (SF (Simplified Forward)) turns out to be a simple one-step-look-ahead rule. Simulations show that SF is very close in performance to BF, even for reasonably small node density. We then study the end-to-end performance of SF in comparison with two extremal policies: Max Forward (MF) and First Forward (FF), and an end-to-end delay minimising policy proposed by Kim et al. 1]. We find that, with appropriate choice of one hop average progress constraint, SF can be tuned to provide a favorable trade-off between end-to-end packet delay and the number of hops in the forwarding path.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Employing multiple base stations is an attractive approach to enhance the lifetime of wireless sensor networks. In this paper, we address the fundamental question concerning the limits on the network lifetime in sensor networks when multiple base stations are deployed as data sinks. Specifically, we derive upper bounds on the network lifetime when multiple base stations are employed, and obtain optimum locations of the base stations (BSs) that maximize these lifetime bounds. For the case of two BSs, we jointly optimize the BS locations by maximizing the lifetime bound using a genetic algorithm based optimization. Joint optimization for more number of BSs is complex. Hence, for the case of three BSs, we optimize the third BS location using the previously obtained optimum locations of the first two BSs. We also provide simulation results that validate the lifetime bounds and the optimum locations of the BSs.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In a mobile ad-hoc network scenario, where communication nodes are mounted on moving platforms (like jeeps, trucks, tanks, etc.), use of V-BLAST requires that the number of receive antennas in a given node must be greater than or equal to the sum of the number of transmit antennas of all its neighbor nodes. This limits the achievable spatial multiplexing gain (data rate) for a given node. In such a scenario, we propose to achieve high data rates per node through multicode direct sequence spread spectrum techniques in conjunction with V-BLAST. In the considered multicode V-BLAST system, the receiver experiences code domain interference (CDI) in frequency selective fading, in addition to space domain interference (SDI) experienced in conventional V-BLAST systems. We propose two interference cancelling receivers that employ a linear parallel interference cancellation approach to handle the CDI, followed by conventional V-BLAST detector to handle the SDI, and then evaluate their bit error rates.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A parallel matrix multiplication algorithm is presented, and studies of its performance and estimation are discussed. The algorithm is implemented on a network of transputers connected in a ring topology. An efficient scheme for partitioning the input matrices is introduced which enables overlapping computation with communication. This makes the algorithm achieve near-ideal speed-up for reasonably large matrices. Analytical expressions for the execution time of the algorithm have been derived by analysing its computation and communication characteristics. These expressions are validated by comparing the theoretical results of the performance with the experimental values obtained on a four-transputer network for both square and irregular matrices. The analytical model is also used to estimate the performance of the algorithm for a varying number of transputers and varying problem sizes. Although the algorithm is implemented on transputers, the methodology and the partitioning scheme presented in this paper are quite general and can be implemented on other processors which have the capability of overlapping computation with communication. The equations for performance prediction can also be extended to other multiprocessor systems.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A link failure in the path of a virtual circuit in a packet data network will lead to premature disconnection of the circuit by the end-points. A soft failure will result in degraded throughput over the virtual circuit. If these failures can be detected quickly and reliably, then appropriate rerouteing strategies can automatically reroute the virtual circuits that use the failed facility. In this paper, we develop a methodology for analysing and designing failure detection schemes for digital facilities. Based on errored second data, we develop a Markov model for the error and failure behaviour of a T1 trunk. The performance of a detection scheme is characterized by its false alarm probability and the detection delay. Using the Markov model, we analyse the performance of detection schemes that use physical layer or link layer information. The schemes basically rely upon detecting the occurrence of severely errored seconds (SESs). A failure is declared when a counter, that is driven by the occurrence of SESs, reaches a certain threshold.For hard failures, the design problem reduces to a proper choice;of the threshold at which failure is declared, and on the connection reattempt parameters of the virtual circuit end-point session recovery procedures. For soft failures, the performance of a detection scheme depends, in addition, on how long and how frequent the error bursts are in a given failure mode. We also propose and analyse a novel Level 2 detection scheme that relies only upon anomalies observable at Level 2, i.e. CRC failures and idle-fill flag errors. Our results suggest that Level 2 schemes that perform as well as Level 1 schemes are possible.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The problem of sensor-network-based distributed intrusion detection in the presence of clutter is considered. It is argued that sensing is best regarded as a local phenomenon in that only sensors in the immediate vicinity of an intruder are triggered. In such a setting, lack of knowledge of intruder location gives rise to correlated sensor readings. A signal-space view-point is introduced in which the noise-free sensor readings associated to intruder and clutter appear as surfaces f(s) and f(g) and the problem reduces to one of determining in distributed fashion, whether the current noisy sensor reading is best classified as intruder or clutter. Two approaches to distributed detection are pursued. In the first, a decision surface separating f(s) and f(g) is identified using Neyman-Pearson criteria. Thereafter, the individual sensor nodes interactively exchange bits to determine whether the sensor readings are on one side or the other of the decision surface. Bounds on the number of bits needed to be exchanged are derived, based on communication-complexity (CC) theory. A lower bound derived for the two-party average case CC of general functions is compared against the performance of a greedy algorithm. Extensions to the multi-party case is straightforward and is briefly discussed. The average case CC of the relevant greaterthan (CT) function is characterized within two bits. Under the second approach, each sensor node broadcasts a single bit arising from appropriate two-level quantization of its own sensor reading, keeping in mind the fusion rule to be subsequently applied at a local fusion center. The optimality of a threshold test as a quantization rule is proved under simplifying assumptions. Finally, results from a QualNet simulation of the algorithms are presented that include intruder tracking using a naive polynomial-regression algorithm. 2010 Elsevier B.V. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The steady state throughput performance of distributed applications deployed in switched networks in presence of end-system bottlenecks is studied in this paper. The effect of various limitations at an end-system is modelled as an equivalent transmission capacity limitation. A class of distributed applications is characterised by a static traffic distribution matrix that determines the communication between various components of the application. It is found that uniqueness of steady state throughputs depends only on the traffic distribution matrix and that some applications (e.g., broadcast applications) can yield non-unique values for the steady state component throughputs. For a given switch capacity, with traffic distribution that yield fair unique throughputs, the trade-off between the end-system capacity and the number of application components is brought out. With a proposed distributed rate control, it has been illustrated that it is possible to have unique solution for certain traffic distributions which is otherwise impossible. Also, by proper selection of rate control parameters, various throughput performance objectives can be realised.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In this paper, we study the problem of wireless sensor network design by deploying a minimum number of additional relay nodes (to minimize network design cost) at a subset of given potential relay locationsin order to convey the data from already existing sensor nodes (hereafter called source nodes) to a Base Station within a certain specified mean delay bound. We formulate this problem in two different ways, and show that the problem is NP-Hard. For a problem in which the number of existing sensor nodes and potential relay locations is n, we propose an O(n) approximation algorithm of polynomial time complexity. Results show that the algorithm performs efficiently (in over 90% of the tested scenarios, it gave solutions that were either optimal or exceeding optimal just by one relay) in various randomly generated network scenarios.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Relay selection combined with buffering of packets of relays can substantially increase the throughput of a cooperative network that uses rateless codes. However, buffering also increases the end-to-end delays due to the additional queuing delays at the relay nodes. In this paper we propose a novel method that exploits a unique property of rateless codes that enables a receiver to decode a packet from non-contiguous and unordered portions of the received signal. In it, each relay, depending on its queue length, ignores its received coded bits with a given probability. We show that this substantially reduces the end-to-end delays while retaining almost all of the throughput gain achieved by buffering. In effect, the method increases the odds that the packet is first decoded by a relay with a smaller queue. Thus, the queuing load is balanced across the relays and traded off with transmission times. We derive explicit necessary and sufficient conditions for the stability of this system when the various channels undergo fading. Despite encountering analytically intractable G/GI/1 queues in our system, we also gain insights about the method by analyzing a similar system with a simpler model for the relay-to-destination transmission times.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We study the trade-off between delivery delay and energy consumption in delay tolerant mobile wireless networks that use two-hop relaying. The source may not have perfect knowledge of the delivery status at every instant. We formulate the problem as a stochastic control problem with partial information, and study structural properties of the optimal policy. We also propose a simple suboptimal policy. We then compare the performance of the suboptimal policy against that of the optimal control with perfect information. These are bounds on the performance of the proposed policy with partial information. Several other related open loop policies are also compared with these bounds.