899 resultados para Combinatorial Algorithms
Resumo:
A general framework for multi-criteria optimal design is presented which is well-suited for automated design of structural systems. A systematic computer-aided optimal design decision process is developed which allows the designer to rapidly evaluate and improve a proposed design by taking into account the major factors of interest related to different aspects such as design, construction, and operation.
The proposed optimal design process requires the selection of the most promising choice of design parameters taken from a large design space, based on an evaluation using specified criteria. The design parameters specify a particular design, and so they relate to member sizes, structural configuration, etc. The evaluation of the design uses performance parameters which may include structural response parameters, risks due to uncertain loads and modeling errors, construction and operating costs, etc. Preference functions are used to implement the design criteria in a "soft" form. These preference functions give a measure of the degree of satisfaction of each design criterion. The overall evaluation measure for a design is built up from the individual measures for each criterion through a preference combination rule. The goal of the optimal design process is to obtain a design that has the highest overall evaluation measure - an optimization problem.
Genetic algorithms are stochastic optimization methods that are based on evolutionary theory. They provide the exploration power necessary to explore high-dimensional search spaces to seek these optimal solutions. Two special genetic algorithms, hGA and vGA, are presented here for continuous and discrete optimization problems, respectively.
The methodology is demonstrated with several examples involving the design of truss and frame systems. These examples are solved by using the proposed hGA and vGA.
Resumo:
Plasma equilibrium geometry has a great influence on the confinement and magnetohydrodynamic stability in tokamaks. The poloidal field (PF) system of a tokamak should be optimized to support the prescribed plasma equilibrium geometry. In this paper, a genetic algorithm-based method is applied to solve the optimization of the positions and currents of tokamak PF coils. To achieve this goal, we first describe the free-boundary code EQT Based on the EQT code, a genetic algorithm-based method is introduced to the optimization. We apply this new method to the PF system design of the fusion-driven subcritical system and plasma equilibrium geometry optimization of the Experimental Advanced Superconducting Tokamak (EAST). The results indicate that the optimization of the plasma equilibrium geometry can be improved by using this method.
Resumo:
Nucleic acids are a useful substrate for engineering at the molecular level. Designing the detailed energetics and kinetics of interactions between nucleic acid strands remains a challenge. Building on previous algorithms to characterize the ensemble of dilute solutions of nucleic acids, we present a design algorithm that allows optimization of structural features and binding energetics of a test tube of interacting nucleic acid strands. We extend this formulation to handle multiple thermodynamic states and combinatorial constraints to allow optimization of pathways of interacting nucleic acids. In both design strategies, low-cost estimates to thermodynamic properties are calculated using hierarchical ensemble decomposition and test tube ensemble focusing. These algorithms are tested on randomized test sets and on example pathways drawn from the molecular programming literature. To analyze the kinetic properties of designed sequences, we describe algorithms to identify dominant species and kinetic rates using coarse-graining at the scale of a small box containing several strands or a large box containing a dilute solution of strands.
Resumo:
167 p.
Resumo:
Protein structure prediction has remained a major challenge in structural biology for more than half a century. Accelerated and cost efficient sequencing technologies have allowed researchers to sequence new organisms and discover new protein sequences. Novel protein structure prediction technologies will allow researchers to study the structure of proteins and to determine their roles in the underlying biology processes and develop novel therapeutics.
Difficulty of the problem stems from two folds: (a) describing the energy landscape that corresponds to the protein structure, commonly referred to as force field problem; and (b) sampling of the energy landscape, trying to find the lowest energy configuration that is hypothesized to be the native state of the structure in solution. The two problems are interweaved and they have to be solved simultaneously. This thesis is composed of three major contributions. In the first chapter we describe a novel high-resolution protein structure refinement algorithm called GRID. In the second chapter we present REMCGRID, an algorithm for generation of low energy decoy sets. In the third chapter, we present a machine learning approach to ranking decoys by incorporating coarse-grain features of protein structures.
Resumo:
There is a growing interest in taking advantage of possible patterns and structures in data so as to extract the desired information and overcome the curse of dimensionality. In a wide range of applications, including computer vision, machine learning, medical imaging, and social networks, the signal that gives rise to the observations can be modeled to be approximately sparse and exploiting this fact can be very beneficial. This has led to an immense interest in the problem of efficiently reconstructing a sparse signal from limited linear observations. More recently, low-rank approximation techniques have become prominent tools to approach problems arising in machine learning, system identification and quantum tomography.
In sparse and low-rank estimation problems, the challenge is the inherent intractability of the objective function, and one needs efficient methods to capture the low-dimensionality of these models. Convex optimization is often a promising tool to attack such problems. An intractable problem with a combinatorial objective can often be "relaxed" to obtain a tractable but almost as powerful convex optimization problem. This dissertation studies convex optimization techniques that can take advantage of low-dimensional representations of the underlying high-dimensional data. We provide provable guarantees that ensure that the proposed algorithms will succeed under reasonable conditions, and answer questions of the following flavor:
- For a given number of measurements, can we reliably estimate the true signal?
- If so, how good is the reconstruction as a function of the model parameters?
More specifically, i) Focusing on linear inverse problems, we generalize the classical error bounds known for the least-squares technique to the lasso formulation, which incorporates the signal model. ii) We show that intuitive convex approaches do not perform as well as expected when it comes to signals that have multiple low-dimensional structures simultaneously. iii) Finally, we propose convex relaxations for the graph clustering problem and give sharp performance guarantees for a family of graphs arising from the so-called stochastic block model. We pay particular attention to the following aspects. For i) and ii), we aim to provide a general geometric framework, in which the results on sparse and low-rank estimation can be obtained as special cases. For i) and iii), we investigate the precise performance characterization, which yields the right constants in our bounds and the true dependence between the problem parameters.
Resumo:
This thesis deals with two problems. The first is the determination of λ-designs, combinatorial configurations which are essentially symmetric block designs with the condition that each subset be of the same cardinality negated. We construct an infinite family of such designs from symmetric block designs and obtain some basic results about their structure. These results enable us to solve the problem for λ = 3 and λ = 4. The second problem deals with configurations related to both λ -designs and (ѵ, k, λ)-configurations. We have (n-1) k-subsets of {1, 2, ..., n}, S1, ..., Sn-1 such that Si ∩ Sj is a λ-set for i ≠ j. We obtain specifically the replication numbers of such a design in terms of n, k, and λ with one exceptional class which we determine explicitly. In certain special cases we settle the problem entirely.
Resumo:
Let L be a finite geometric lattice of dimension n, and let w(k) denote the number of elements in L of rank k. Two theorems about the numbers w(k) are proved: first, w(k) ≥ w(1) for k = 2, 3, ..., n-1. Second, w(k) = w(1) if and only if k = n-1 and L is modular. Several corollaries concerning the "matching" of points and dual points are derived from these theorems.
Both theorems can be regarded as a generalization of a theorem of de Bruijn and Erdös concerning ʎ= 1 designs. The second can also be considered as the converse to a special case of Dilworth's theorem on finite modular lattices.
These results are related to two conjectures due to G. -C. Rota. The "unimodality" conjecture states that the w(k)'s form a unimodal sequence. The "Sperner" conjecture states that a set of non-comparable elements in L has cardinality at most max/k {w(k)}. In this thesis, a counterexample to the Sperner conjecture is exhibited.
Resumo:
This paper describes a path-following phase unwrapping algorithm and a phase unwrapping algorithm based on discrete cosine transform (DCT) which accelerates the Computation and suppresses the propagation of noise. Through analysis of fringe pattern with serious noises simulated in mathematic model, we make a contrast between path-following algorithm and DCT algorithm. The advantages and disadvantages or analytical fringe pattern are also given through comparison of two algorithms. Three-dimensional experimental results have been given to prove the validity of these algorithms. Despite DCT phase unwrapping technique robustness and speed in some cases, it cannot be unwrapping inconsistencies phase. The path-following algorithm can be used in automation analysis of fringe patterns with little influence of noise. (c) 2007 Elsevier GmbH. All rights reserved.
Resumo:
138 p.
Resumo:
179 p.