968 resultados para Classification and description of nets
Resumo:
Some basic topics concerned with the extraction of textural and geometric information from cell nucleus images as well as description and characterization of chromatin supraorganization and consequent classification of nuclear phenotypes are presented.
Resumo:
The objective of this thesis is to develop and generalize further the differential evolution based data classification method. For many years, evolutionary algorithms have been successfully applied to many classification tasks. Evolution algorithms are population based, stochastic search algorithms that mimic natural selection and genetics. Differential evolution is an evolutionary algorithm that has gained popularity because of its simplicity and good observed performance. In this thesis a differential evolution classifier with pool of distances is proposed, demonstrated and initially evaluated. The differential evolution classifier is a nearest prototype vector based classifier that applies a global optimization algorithm, differential evolution, to determine the optimal values for all free parameters of the classifier model during the training phase of the classifier. The differential evolution classifier applies the individually optimized distance measure for each new data set to be classified is generalized to cover a pool of distances. Instead of optimizing a single distance measure for the given data set, the selection of the optimal distance measure from a predefined pool of alternative measures is attempted systematically and automatically. Furthermore, instead of only selecting the optimal distance measure from a set of alternatives, an attempt is made to optimize the values of the possible control parameters related with the selected distance measure. Specifically, a pool of alternative distance measures is first created and then the differential evolution algorithm is applied to select the optimal distance measure that yields the highest classification accuracy with the current data. After determining the optimal distance measures for the given data set together with their optimal parameters, all determined distance measures are aggregated to form a single total distance measure. The total distance measure is applied to the final classification decisions. The actual classification process is still based on the nearest prototype vector principle; a sample belongs to the class represented by the nearest prototype vector when measured with the optimized total distance measure. During the training process the differential evolution algorithm determines the optimal class vectors, selects optimal distance metrics, and determines the optimal values for the free parameters of each selected distance measure. The results obtained with the above method confirm that the choice of distance measure is one of the most crucial factors for obtaining higher classification accuracy. The results also demonstrate that it is possible to build a classifier that is able to select the optimal distance measure for the given data set automatically and systematically. After finding optimal distance measures together with optimal parameters from the particular distance measure results are then aggregated to form a total distance, which will be used to form the deviation between the class vectors and samples and thus classify the samples. This thesis also discusses two types of aggregation operators, namely, ordered weighted averaging (OWA) based multi-distances and generalized ordered weighted averaging (GOWA). These aggregation operators were applied in this work to the aggregation of the normalized distance values. The results demonstrate that a proper combination of aggregation operator and weight generation scheme play an important role in obtaining good classification accuracy. The main outcomes of the work are the six new generalized versions of previous method called differential evolution classifier. All these DE classifier demonstrated good results in the classification tasks.
Resumo:
The aim of this study was to analyze clinical aspects, hearing evolution and efficacy of clinical treatment of patients with sudden sensorineural hearing loss (SSNHL). This was a prospective clinical study of 136 consecutive patients with SSNHL divided into three groups after diagnostic evaluation: patients with defined etiology (DE, N = 13, 10%), concurrent diseases (CD, N = 63, 46.04%) and idiopathic sudden sensorineural hearing loss (ISSHL, N = 60, 43.9%). Initial treatment consisted of prednisone and pentoxifylline. Clinical aspects and hearing evolution for up to 6 months were evaluated. Group CD comprised 73% of patients with metabolic decompensation in the initial evaluation and was significantly older (53.80 years) than groups DE (41.93 years) and ISSHL (39.13 years). Comparison of the mean initial and final hearing loss of the three groups revealed a significant hearing improvement for group CD (P = 0.001) and group ISSHL (P = 0.001). Group DE did not present a significant difference in thresholds. The clinical classification for SSNHL allows the identification of significant differences regarding age, initial and final hearing impairment and likelihood of response to therapy. Elevated age and presence of coexisting disease were associated with a greater initial hearing impact and poorer hearing recovery after 6 months. Patients with defined etiology presented a much more limited response to therapy. The occurrence of decompensated metabolic and cardiovascular diseases and the possibility of first manifestation of auto-immune disease and cerebello-pontine angle tumors justify an adequate protocol for investigation of SSNHL.
Resumo:
Cover title.
Resumo:
Cover title: Tunis's guide to Niagara and traveller's companion, illustrated.
Resumo:
Cover title: Illustrated guide to Niagara Falls and vicinity.
Resumo:
This study examined patterns of psychotropic medication use among 120 participants with intellectual disabilities (ID) who used to live in facilities and now reside in community-based settings in Ontario. There were significantly more participants taking psychotropic medication in the community (83.30/0) than in the facility (74.2%). Of those who showed change, 4.2% were taking medication in the facility but not in the community, and 13.3% were taking medications in the community but not in the facility. While significantly more participants in the community were taking antipsychotic and antidepressant medications, there was no significant increase in psychiatric diagnoses after relocation. Additionally, PRN use was significantly reduced in the comlnunity while daily medication use was significantly higher. The most common PRN in both settings was lorazepam and the most common antipsychotics were risperidone, quetiapine and olanzapine.
Resumo:
UANL
Resumo:
UANL
Resumo:
UANL