1000 resultados para Cibicidoides sp., d18O


Relevância:

80.00% 80.00%

Publicador:

Resumo:

We present benthic isotope stratigraphies for Sites 1236, 1237, 1239, and 1241 that span the late Miocene-Pliocene time interval from 6 to 2.4 Ma. Orbitally tuned timescales were generated for Sites 1237 and 1241 by correlating the high-frequency variations in gamma ray attenuation density, percent sand of the carbonate fraction, and benthic d13C to variations in Earth's orbital parameters. The astronomical timescales for Sites 1237 and 1241 are in agreement with the one from Atlantic Site 925/926 (Ocean Drilling Program Leg 154). The comparison of benthic d18O and d13C records from the east Pacific sites and Atlantic Site 925/926 revealed a surprising clarity of the "41-k.y. signal" in d13C records and a remarkably good correlation between their d13C records. This suggests that the late Miocene-Pliocene amplitudes of obliquity-related d13C cycles reflect a magnitude of global response often larger than that provided by obliquity-related d18O cycles. At Site 1237, the orbitally derived ages of Pliocene magnetic reversal boundaries between the base of Réunion and the top of Thvera confirm astronomical datings of the generally accepted ATNTS2004 timescale, except for the top of Kaena and the base of Sidufjall. Our astronomical age for the top of Kaena is about one obliquity cycle older. The base of Sidufjall appears to be about one precession cycle younger. The age models of Sites 1236 and 1239 were established by correlating their benthic d18O and d13C records directly to the orbitally tuned isotope record of Site 1241.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Stable isotope data on benthic foraminifera from more than 30 cores on the northern Emperor Seamounts and in the Okhotsk Sea are synthesized in paleohydrographic profiles spanning the depth range 1000-4000 m. Holocene (core-top) benthic foraminiferal d18O and d13C data are calibrated to modern hydrographic properties through measurements of d13C of SumCO2 and d18O of seawater. Cibicidoides stable isotope ratios are close to the d13C and equilibrium d18O of seawater, whereas Uvigerina d18O and d13C are variably offset from Cibicidoides. Glacial maximum d13C of Cibicidoides displays a different vertical profile than that of the Holocene. When results are adjusted by +0.32 per mil to account for the secular change in d13C during the last glacial maximum, the data coincide with the modern seawater and foraminiferal curves deeper than ~2 km. However, at shallower depths d13C gradually increases by as much as 1 per mil above the modern value. Furthermore, above 2 km the benthic d18O decreases by ~0.5 per mil. These results are consistent with a benthic front at ~2 km in the North Pacific (see Herguera et al., 1992), but they differ from interpretations based on trace metal data which indicate a source of nutrient-depleted deep water during glaciation. The isotopic data suggest that during glaciation there was a better ventilated watermass at intermediate depths in the far northwestern Pacific, it was relatively fresher than deep waters there, and deep waters were as nutrient-rich as today.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

We investigated surface and deep ocean variability in the subpolar North Atlantic from 1000 to 500 thousand years ago (ka) based on two Ocean Drilling Program (ODP) sites, Feni drift site 980 (55°29'N, 14°42'W) and Bjorn drift site 984 (61°25'N, 24°04'W). Benthic foraminiferal stable isotope data, planktic foraminiferal faunas, ice-rafted debris data, and faunally based sea-surface temperature estimates help test the hypothesis that oceanographic changes in the North Atlantic region were associated with the onset of the 100-kyr world during the mid-Pleistocene revolution. Based on percentage of Neogloboquadrina pachyderma (s) records from both sites, surface waters during interglacials and glacials were cooler in the mid-Pleistocene than during marine isotope stages (MIS) 5 and 6. In particular, interglaciations at Bjorn drift site 984 were significantly cooler. Faunal evidence suggests that the interglacial Arctic front shifted from a position between the two sites to a position northwest of Bjorn drift site 984 after ca. 610 ka. As during the late Pleistocene, we find faunal evidence for lagging surface warmth at most of the glacial initiations during the mid-Pleistocene. Each initiation is associated with high benthic d13C values that are maintained into the succeeding glaciation, which we term "lagging NADW production." These findings indicate that lagging warmth and lagging NADW production are robust features of the regional climate system that persist in the middle to late Pleistocene.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Carbon isotopically based estimates of CO2 levels have been generated from a record of the photosynthetic fractionation of 13C (epsilon p) in a central equatorial Pacific sediment core that spans the last ~255 ka. Contents of 13C in phytoplanktonic biomass were determined by analysis of C37 alkadienones. These compounds are exclusive products of Prymnesiophyte algae which at present grow most abundantly at depths of 70-90 m in the central equatorial Pacific. A record of the isotopic compostion of dissolved CO2 was constructed from isotopic analyses of the planktonic foraminifera Neogloboquadrina dutertrei, which calcifies at 70-90 m in the same region. Values of epsilon p, derived by comparison of the organic and inorganic delta values, were transformed to yield concentrations of dissolved CO2 (c e) based on a new, site-specific calibration of the relationship between epsilon p and c e. The calibration was based on reassessment of existing epsilon p versus c e data, which support a physiologically based model in which epsilon p is inversely related to c e. Values of PCO2, the partial pressure of CO2 that would be in equilibrium with the estimated concentrations of dissolved CO2, were calculated using Henry's law and the temperature determined from the alkenone-unsaturation index UK 37. Uncertainties in these values arise mainly from uncertainties about the appropriateness (particularly over time) of the site-specific relationship between epsilon p and 1/c e. These are discussed in detail and it is concluded that the observed record of epsilon p most probably reflects significant variations in Delta pCO2, the ocean-atmosphere disequilibrium, which appears to have ranged from ~110 µatm during glacial intervals (ocean > atmosphere) to ~60 µatm during interglacials. Fluxes of CO2 to the atmosphere would thus have been significantly larger during glacial intervals. If this were characteristic of large areas of the equatorial Pacific, then greater glacial sinks for the equatorially evaded CO2 must have existed elsewhere. Statistical analysis of air-sea pCO2 differences and other parameters revealed significant (p < 0.01) inverse correlations of Delta pCO2 with sea surface temperature and with the mass accumulation rate of opal. The former suggests response to the strength of upwelling, the latter may indicate either drawdown of CO2 by siliceous phytoplankton or variation of [CO2]/[Si(OH)4] ratios in upwelling waters.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Presently, the intermediate depths of the North Atlantic Ocean are occupied by a great lens of warm, saline water whose source is the Mediterranean Sea. This water flows both westward and northward, finally entering the Norwegian Sea where it may contribute to the formation of North Atlantic Deep Water. The Late Neogene history of Mediterranean Outflow in the Atlantic can be monitored at DSDP-IPOD Site 548 on the continental slope Southwest of Ireland using benthic Foraminifera oxygen isotope values. Isotopic data from 154 samples indicate that Mediterranean water was absent from the mid-depth North Atlantic from 3.4 to 3.2 Ma ago. However, at about 2.9 Ma ago the isotopic values at Site 548 diverge from those recorded from the deep North Atlantic and they can be interpreted to indicate the appearance of a new water mass, possibly Mediterranean water, in the North Atlantic water column. This appearance may be related to climatic changes that occurred around the Mediterranean Basin at about 2.9 Ma ago. The analysis of 189 samples for grain-size distributions shows that a significant increase in the silt-size fraction occurs at the same level that isotopic analysis indicates a change in bottom waters at Site 548. The grainsize data support the hypothesis that mid-depth water-mass changes occurred at about 2.9 Ma ago.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

We investigate the evolution of Cenozoic climate and ice volume as evidenced by the oxygen isotopic composition of seawater (delta18Osw) derived from benthic foraminiferal Mg/Ca ratios to constrain the temperature effect contained in foraminiferal delta18O values. We have constructed two benthic foraminiferal Mg/Ca records from intermediate water depth sites (Ocean Drilling Program sites 757 and 689 from the subtropical Indian Ocean and the Weddell Sea, respectively). Together with the previously published composite record of Lear et al. (2002, doi:10.1126/science.287.5451.269) and the Neogene record from the Southern Ocean of Billups and Schrag (2002, doi:10.1029/2000PA000567), we obtain three, almost complete representations of the delta18Osw for the past 52 Myr. We discuss the sensitivity of early Cenozoic Mg/Ca-derived paleotemperatures (and hence the delta18Osw) to assumptions about seawater Mg/Ca ratios. We find that during the middle Eocene (~ 49-40 Ma), modern seawater ratios yield Mg/Ca-derived temperatures that are in good agreement with the oxygen isotope paleothermometer assuming ice-free conditions. Intermediate waters cooled during the middle Eocene reaching minimum temperatures by 40 Ma. The corresponding delta18Osw reconstructions support ice growth on Antarctica beginning by at least 40 Ma. At the Eocene/Oligocene boundary, Mg/Ca ratios (and hence temperatures) from Weddell Sea site 689 display a well-defined maximum. We caution against a paleoclimatic significance of this result and put forth that the partitioning coefficient of Mg in benthic foraminifera may be sensitive to factors other than temperature. Throughout the remainder of the Cenozoic, the temporal variability among delta18Osw records is similar and similar to longer-term trends in the benthic foraminiferal delta18O record. An exception occurs during the Pliocene when delta18Osw minima in two of the three records suggest reductions in global ice volume that are not apparent in foraminiferal delta18O records, which provides a new perspective to the ongoing debate about the stability of the Antarctic ice sheet. Maximum delta18Osw values recorded during the Pleistocene at Southern Ocean site 747 agree well with values derived from the geochemistry of pore waters (Schrag et al., 1996, doi:10.1126/science.272.5270.1930) further highlighting the value of the new Mg/Ca calibrations of Martin et al. (2002, doi:10.1016/S0012-821X(02)00472-7) and Lear et al. (2002, doi:10.1016/S0016-7037(02)00941-9) applied in this study. We conclude that the application of foraminiferal Mg/Ca ratios allows a refined view of Cenozoic ice volume history despite uncertainties related to the geochemical cycling of Mg and Ca on long time scales.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The sensitivities of benthic foraminiferal Mg/Ca and Li/Ca to bottom water temperature and carbonate saturation state have recently been assessed. Here we present a new approach that uses paired Mg/Ca and Li/Ca records to calculate simultaneous changes in temperature and saturation state. Using previously published records, we first use this approach to document a cooling of deep ocean waters associated with the establishment of the Antarctic ice sheet at the Eocene-Oligocene climate transition. We then apply this approach to new records of the Middle Miocene Climate Transition from ODP Site 761 to estimate variations in bottom water temperature and the oxygen isotopic composition of seawater. We estimate that the oxygen isotopic composition of seawater varied by ~1 per mil between the deglacial extreme of the Miocene Climatic Optimum and the glacial maximum following the Middle Miocene Climate Transition, indicating large amplitude variations in ice volume. However, the longer-term change between 15.3 and 12.5 Ma is marked by a ~1°C cooling of deep waters, and an increase in the oxygen isotopic composition of seawater of ~0.6 per mil. We find that bottom water saturation state increased in the lead up to the Middle Miocene Climate Transition and decreased shortly after. This supports decreasing pCO2 as a driver for global cooling and ice sheet expansion, in agreement with existing boron isotope and leaf stomatal index CO2 records but in contrast to the published alkenone CO2 records.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Based on benthic foraminiferal delta18O from ODP Site 1143, a 5-Myr astronomical timescale for the West Pacific Plio-Pleistocene was established using an automatic orbital tuning method. The tuned Brunhes/Matuyama paleomagnetic polarity reversal age agrees well with the previously published age of 0.78 Ma. The tuned ages for several planktonic foraminifer bio-events also agree well with published dates, and new ages for some other bio-events in the South China Sea were also estimated. The benthic delta18O from Site 1143 is highly coherent with the Earth's orbit (ETP) both at the obliquity and precession bands for the last 5 Myr, and at the eccentricity band for the last 2 Myr. In general, the 41-kyr cycle was dominant through the Plio-Pleistocene although the 23-kyr cycle was also very strong. The 100-kyr cycle became dominant only during the last 1 Myr. A comparison of the benthic delta18O between the Atlantic (ODP 659) and the East and West Pacific (846 and 1143) reveals that the Atlantic-Pacific benthic oxygen isotope difference ratio (Delta delta18OAtl-Pac) displays an increasing trend in three time intervals: 3.6-2.7 Ma, 2.7-2.1 Ma and 1.5-0.25 Ma. Each of the intervals begins with a rapid negative shift in Delta delta18OAtl-Pac, followed by a long period with an increasing trend, corresponding to the growth of the Northern Hemisphere ice sheet. This means that all three intervals of ice sheet growth in the Northern Hemisphere were accompanied at the beginning by a rapid relative warming of deep water in the Atlantic as compared to that of the Pacific, followed by its gradual relative cooling. This general trend, superimposed on the frequent fluctuations with glacial cycles, should yield insights into the processes leading to the boreal glaciation. Cross-spectral analyses of the Delta delta18OAtl-Pac with the Earth's orbit suggests that after the initiation of Northern Hemisphere glaciation at about 2.5 Ma, obliquity rather than precession had become the dominant force controlling the vertical structure or thermohaline circulation in the paleo-ocean.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Oxygen isotope data for upper Turonian planktonic foraminifera at Deep Sea Drilling Project Site 511 (Falkland Plateau, 60°S paleolatitude) exhibit an ~2 per mil excursion to values as low as -4.66 per mil (Vienna Peedee belemnite standard; PDB) coincident with the warmest tropical temperature estimates yet obtained for the open ocean. The lowest planktonic foraminifer d18O values suggest that the upper ocean was as warm as 30-32°C. This is an extraordinary temperature for 60°S latitude but is consistent with temperatures estimated from apparently coeval mollusc d18O from nearby James Ross Island (65°S paleolatitude). Glassy textural preservation, a well-defined depth distribution in Site 511 planktonics, low sediment burial temperature (~32°C), and lack of evidence of highly depleted pore waters argue against diagenesis (even solid state diffusion) as the cause of the very depleted planktonic values. The lack of change in benthic foraminifer d18O suggests brackish water capping as the mechanism for the low planktonic d18O values. However, mixing ratio calculations show that the amount of freshwater required to produce a 2 per mil shift in ambient water would drive a 7 psu decrease in salinity. The abundance and diversity of planktonic foraminifera and nannofossils, high planktonic:benthic ratios, and the appearance of keeled foraminifera argue against lower-than-normal marine salinities. Isotope calculations and climate models indicate that we cannot call upon more depleted freshwater d18O to explain this record. Without more late Turonian data, especially from outside the South Atlantic basin, we can currently only speculate on possible causes of this paradoxical record from the core of the Cretaceous greenhouse.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

During the mid-Cretaceous period, the global subsurface oceans were relatively warm, but the origins of the high temperatures are debated. One hypothesis suggests that high sea levels and the continental configuration allowed high-salinity waters in low-latitude epicontinental shelf seas to sink and form deep-water masses (Brass et al., 1982, doi:10.1038/296620a0; Arthur and Natland, 1979; Chamberlin, 1906). In another scenario, surface waters in high-latitude regions, the modern area of deep-water formation, were warmed through greenhouse forcing (Bice and Marotzke, 2001, doi:10.1029/2000JC000561), which then propagated through deep-water circulation. Here, we use oxygen isotopes and Mg/Ca ratios from benthic foraminifera to reconstruct intermediate-water conditions in the tropical proto-Atlantic Ocean from 97 to 92 Myr ago. According to our reconstruction, intermediate-water temperatures ranged between 20 and 25 °C, the warmest ever documented for depths of 500-1,000 m. Our record also reveals intervals of high-salinity conditions, which we suggest reflect an influx of saline water derived from epicontinental seas around the tropical proto-North Atlantic Ocean. Although derived from only one site, our data indicate the existence of warm, saline intermediate waters in this silled basin. This combination of warm saline intermediate waters and restricted palaeogeography probably acted as preconditioning factors for the prolonged period of anoxia and black-shale formation in the equatorial proto-North Atlantic Ocean during the Cretaceous period.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

A moderate-resolution isotope stratigraphy (with an average of one sample per 17,500 yr.) derived from the benthic foraminifer Uvigerina (or Cibicides), the planktonic foraminifer Globigerina bulloides, and calcareous nannofossil concentrates is presented for the entire Quaternary (and latest Pliocene) section of mid-upper bathyal calcareous oozes from DSDP Site 593, western Challenger Plateau, south Tasman Sea. Superimposed on a trend of gradually increasing average delta18O values through the Pleistocene, reflecting the progressive buildup of polar ice sheets, is a record of highfrequency but generally low amplitude (0.5-1?) isotope fluctuations in the early Quaternary (1.9-1.0 m.y.), followed by a greatly increased intensity (1.5-2.0 ?) of glacial-interglacial fluctuations during the late Quaternary (< 1.0 m.y.). The standard late Quaternary isotope stages 1 to 24 are mainly resolvable. Significant excursions in both delta18O and delta13C values at various times during the Quaternary are suggested to be due to periodic, fundamental changes in ocean circulation properties over the plateau. For example, intensified upwelling of Antarctic Intermediate Waters during several glacial periods is indicated by the convergence of benthic and planktonic foraminiferal delta18O data, and productivity variations may account for certain delta13C spikes in the record. With increasingly higher resolution analysis this core will provide a useful Quaternary isotope reference section for southern temperate waters in the southwest Pacific, centered on New Zealand.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Instrumental climate observations provide robust records of global land and ocean temperatures during the twentieth century. Unlike for temperature, continuous salinity observations in the surface ocean are scarce prior to 1970, and the magnitude of salinity changes during the twentieth century is largely unknown. Surface ocean salinity is a major component in climate dynamics, as it influences ocean circulation and water mass formation. Here we present an annually resolved reconstruction of salinity variations in the surface waters of the western subtropical North Pacific Ocean since 1873, based on bimonthly records of d18O, Sr/Ca, and U/Ca in a coral from the Ogasawara Islands. The reconstruction indicates that an abrupt regime shift toward fresher surface ocean conditions occurred between 1905 and 1910. Observational atmospheric data suggest that the abrupt freshening was associated with a weakening of the winds that drive the Kuroshio Current system and the associated subtropical gyre circulation. We note that the abrupt early-twentieth-century freshening in the western subtropical North Pacific precedes abrupt climate change in the northern North Atlantic by a few years. The potential for abrupt regime shifts in surface ocean salinity should be considered in climate predictions for the coming decades.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Temporal changes in benthic foraminiferal assemblages were quantitatively examined (> 63 µm fraction) in four southwest Pacific deep-sea Neogene sequences in a depth transect between approximately 1300 and 3200 m to assist in evaluating paleoeeanographic history. The most conspicuous changes in benthic foraminiferal assemblages occurred in association with paleoclimatic changes defined at least in part by oxygen isotopic changes. The largest, centered at ~15 Ma (early Middle Miocene), is represented by an increase in the relative frequencies of Epistominella exigua, which underwent a major upward depth migration at that time. This was contemporaneous with the well-known positive oxygen isotopic shift in the early Middle Miocene. In Sites 588 and 590, most of the increase in relative abundances of E. exigua occurred during the middle to later part of the ~80 shift, following major growth of the east Antarctic ice sheet. Later assemblage changes occurred at 8.5 and 6.5 Ma. These associations indicate that the benthic foraminiferal assemblages in this depth transect largely adjusted to changes in deep waters related to Antarctic cryospheric evolution. In general, the Neogene benthic foraminiferal assemblages in this region underwent little change during the last 23 million years. This faunal conservatism suggests that deep-sea environments underwent relatively little change in the southwest Pacific during much of the Neogene. Although paleoceanographic changes did occur, partly in response to highlatitude cryospheric evolution, these were not of sufficient magnitude to create major deep-sea faunal changes in this part of the ocean. The benthic foraminiferal assemblages are dominated by individuals smaller than 150 µm. Most taxonomic turnover occurred in the larger (> 150 µm) size fractions.