962 resultados para Chromosome number variation
Resumo:
Copy number variants (CNVs) are major contributors to genetic disorders. We have dissected a region of the 16p11.2 chromosome--which encompasses 29 genes--that confers susceptibility to neurocognitive defects when deleted or duplicated. Overexpression of each human transcript in zebrafish embryos identified KCTD13 as the sole message capable of inducing the microcephaly phenotype associated with the 16p11.2 duplication, whereas suppression of the same locus yielded the macrocephalic phenotype associated with the 16p11.2 deletion, capturing the mirror phenotypes of humans. Analyses of zebrafish and mouse embryos suggest that microcephaly is caused by decreased proliferation of neuronal progenitors with concomitant increase in apoptosis in the developing brain, whereas macrocephaly arises by increased proliferation and no changes in apoptosis. A role for KCTD13 dosage changes is consistent with autism in both a recently reported family with a reduced 16p11.2 deletion and a subject reported here with a complex 16p11.2 rearrangement involving de novo structural alteration of KCTD13. Our data suggest that KCTD13 is a major driver for the neurodevelopmental phenotypes associated with the 16p11.2 CNV, reinforce the idea that one or a small number of transcripts within a CNV can underpin clinical phenotypes, and offer an efficient route to identifying dosage-sensitive loci.
Resumo:
Les Champignons Endomycorhiziens Arbusculaires (CEA) forment une symbiose racinaire avec environ 80% des espèces connues de plantes vasculaires. Ils occupent une position écologique très importante liée aux bénéfices qu'ils confèrent aux plantes. Des études moléculaires effectuées sur des gènes ribosomaux ont révélé un très grand polymorphisme, tant à l'intérieur des espèces qu'entre celles-ci. Ces champignons étant coenocytiques et multinucléés, l'organisation de cette variabilité génétique intraspécifique pourrait avoir différentes origines. Ce travail se propose d'examiner l'organisation et l'évolution de cette variabilité. Sur la base de fossiles, l'existence des CEA remonte à au moins 450 millions d'années. Cette symbiose peut donc être considérée comme ancienne. Les premières données moléculaires n'indiquant pas de reproduction sexuée, une hypothèse fut élaborée stipulant que les CEA seraient des asexués ancestraux. La première partie de cette thèse (chapitre 2) met en évidence l'existence de recombinaison dans différents CEA mais montre également que celle-ci est insuffisante pour purger les mutations accumulées. La reproduction étant essentiellement asexuée, on peut prédire que les nombreux noyaux ont probablement divergé génétiquement. En collaboration avec M. Hijri nous avons pu vérifier cette hypothèse (chapitre 2). Dans le chapitre 3 j'ai cherché à comprendre si le polymorphisme était également présent dans une population naturelle du CEA Glomus intraradices au niveau intraspécifique, ce qui n'avait encore jamais été examiné. En comparant les empreintes génétiques d'individus obtenus chacun à partir d'une spore mise en culture, j'ai clairement démontré que d'importantes différences génétiques existent entre ceux-ci. Un résultat similaire, portant sur des traits quantitatifs d'individus de la même population, a été trouvé par A. Koch. Les deux études en ensemble montre que le polymorphisme génétique dans cette population est suffisamment grand pour être important au niveau écologique. Dans le chapitre 4, j'ai cherché a examiner le polymorphisme des séquences du gène BiP au sein d'un individu. C'est la première étude qui examine la diversité génétique du génome de CEA avec un autre marqueur que l'ADN ribosomique. J'ai trouvé 31 types de séquences différentes du gène BiP issu d'un isolat de G. intraradices mis en culture à partir d'une seule spore. Cette variation n'était pas restreinte à des zones sélectivement neutres du BiP. Mes résultats montrent qu'il y a un grand nombre de variants non-fonctionnels, proportionnellement au faible nombre de copies attendues par noyau. Ceci va dans le sens d'une partition de l'information génétique entre les noyaux.<br/><br/>Arbuscular mycorrhizal fungi (AMF) are root symbionts with about 80% of all known species of vascular land plants. AMF are ecologically important because of the benefits that they confer to plants. Molecular studies on AMF showed that rDNA sequences were highly variable between species and within species. Because AMF are coenocytic and multinucleate there are several possibilities how this intraspecific genetic variation could be organized. Therefore, the organization and evolution of this variation in AMF were investigated in the present work. Based on fossil records the AMF symbiosis has existed for 450 Million years and is therefore considered ancient. First molecular data indicated no evident sexual reproduction and gave rise to the hypothesis that AMF might be ancient asexuals. The first part of this thesis (Chapter 2) shows evidence for recombination in different AMF but also indicates that it has not been frequent enough to purge accumulated mutations. Given asexual reproduction, it has been predicted that the many nuclei in AMF should diverge leading to genetically different nuclei. This hypothesis has been confirmed by an experiment of M. Hijri and is also included in chapter 2 as the results were published together. In chapter 3 I then investigated whether intraspecific genetic variation also exists in a field population of the AMF Glomus intraradices. Comparing genetic fingerprints of individuals derived from single spores I could clearly show that large genetic differences exist. A similar result, based on quantitative genetic traits, was found for the same population by A. Koch. The two studies taken together show that the genetic variation observed in the population is high enough to be of ecological relevance. Lastly, in chapter 4, I investigated within individual genetic variation among BiP gene sequences. It is the first study that has analyzed genetic diversity in the AMF genome in a region of DNA other than rDNA. I found 31 sequence variants of the BiP gene in one G. intraradices isolate that originated from one spore. Genetic variation was not only restricted to selectively neutral parts of BiP. A high number of predicted non-functional variants compared to a likely low number of copies per nucleus indicated that functional genetic information might even be partitioned among nuclei. The results of this work contribute to our understanding of potential evolutionary strategies of ancient asexuals, they also suggest that genetic differences in a population might be ecologically relevant and they show that this variation even occurs in functional regions of the AMF genome.
Resumo:
Wheat yield and grain nitrogen concentration (GNC; mg N/g grain) are frequently negatively correlated. In most growing conditions, this is mainly due to a feedback process between GNC and the number of grains/m2. In Mediterranean conditions, breeders may have produced cultivars with conservative grain set. The present study aimed at clarifying the main physiological determinants of grain nitrogen accumulation (GNA) in Mediterranean wheat and to analyse how breeding has affected them. Five field experiments were carried out in north-eastern Spain in the 2005/06 and 2006/ 07 growing seasons with three cultivars released at different times and an advanced line. Depending on the experiment, source-sink ratios during grain filling were altered by reducing grain number/m2 either through pre-anthesis shading (unshaded control or 0.75 shading only between jointing and anthesis) or by directly trimming the spikes after anthesis and before the onset of the effective grain filling period (un-trimmed control or spikes halved 7–10 days after anthesis). Grain nitrogen content (GN content ; mg N/grain) decreased with the year of release of the genotypes. As the number of grains/m2 was also increased by breeding there was a clear dilution effect on the amount of nitrogen allocated to each grain. However, the increase in GN content in old genotypes did not compensate for the loss in grain nitrogen yield (GNY) due to the lower number of grains/m2. GN content of all genotypes increased (increases ranged from 0.13 to 0.40 mg N/grain, depending on experiment and genotype) in response to the post-anthesis spike trimming or pre-anthesis shading. The degree of source-limitation for GNA increased with the year of release of the genotypes (and thus with increases in grain number/m2) from 0.22 (mean of the four manipulative experiments) in the oldest cultivar to 0.51 (mean of the four manipulative experiments) in the most modern line. It was found that final GN content depended strongly on the source-sink ratio established at anthesis between the number of grains set and the amount of nitrogen absorbed at this stage. Thus, Mediterranean wheat breeding that improved yield through increases in grain number/m2 reduced the GN content by diluting a rather limited source of nitrogen into more grains. This dilution effect produced by breeding was further confirmed by the reversal effect produced by grain number/m2 reductions due to either pre-anthesis shading or post-anthesis spike trimming.
Resumo:
Chromosome studies were performed in two varieties of Mangifera indica L. (mango), 'IAC-140 Espadona' and in its progenitor 'Espada Stahl'. Both varieties showed 2n=40 chromosomes though the karyotype formulae were 8m + 10sm + 2sm s for 'Stahl' and 7m + 11sm + 2sm s for 'IAC-140'. The varieties showed moderate karyotype asymmetry which was estimated according to four different indices. Both varieties exhibited three chromosome pairs with silver impregnation after NOR-banding. The number of nucleoli within interphase cells varied from one, the commonest, to eight. The nucleolus persistent phenomenon was observed in more than 22% of metaphase cells of both varieties, seeing that in 'Stahl', up to two nucleoli were evidenced. This variety also showed one nucleolus in several anaphase cells. The studies were suitable for evidencing diversity at chromosomal level between these two varieties.
Resumo:
Gene flow (defined as allele exchange between populations) and gene flux (defined as allele exchange during meiosis in heterokaryotypic females) are important factors decreasing genetic differentiation between populations and inversions. Many chromosomal inversions are under strong selection and their role in recombination reduction enhances the maintenance of their genetic distinctness. Here we analyze levels and patterns of nucleotide diversity, selection and demographic history, using 37 individuals of Drosophila subobscura from Mount Parnes (Greece) and Barcelona (Spain). Our sampling focused on two frequent O-chromosome arrangements that differ by two overlapping inversions (OST and O3+4), which are differentially adapted to the environment as observed by their opposing latitudinal clines in inversion frequencies. The six analyzed genes (Pif1A, Abi, Sqd, Yrt, Atpa and Fmr1) were selected for their location across the O-chromosome and their implication in thermal adaptation. Despite the extensive gene flux detected outside the inverted region, significant genetic differentiation between both arrangements was found inside it. However, high levels of gene flow were detected for all six genes when comparing the same arrangement among populations. These results suggest that the adaptive value of inversions is maintained, regardless of the lack of genetic differentiation within arrangements from different populations, and thus favors the Local Adaptation hypothesis over the Coadapted Genome hypothesis as the basis of the selection acting on inversions in these populations.
Resumo:
Nuclear DNA content in gametophytes and sporophytes or the prostrate phases of the following species of Bonnemaisoniaceae (Asparagopsis armata, Asparagopsis taxiformis, Bonnemaisonia asparagoides, Bonnemaisonia clavata and Bonnemaisonia hamifera) were estimated by image analysis and static microspectrophotometry using the DNA-localizing fluorochrome DAPI (4′, 6-diamidino-2-phenylindole, dilactate) and the chicken erythrocytes standard. These estimates expand on the Kew database of DNA nuclear content. DNA content values for 1C nuclei in the gametophytes (spermatia and vegetative cells) range from 0.5 pg to 0.8 pg, and for 2C nuclei in the sporophytes or the prostrate phases range from 1.15-1.7 pg. Although only the 2C and 4C values were observed in the sporophyte or the prostrate phase, in the vegetative cells of the gametophyte the values oscillated from 1C to 4C, showing the possible start of endopolyploidy. The results confirm the alternation of nuclear phases in these Bonnemaisoniaceae species, in those that have tetrasporogenesis, as well as those that have somatic meiosis. The availability of a consensus phylogenetic tree for Bonnemaisoniaceae has opened the way to determine evolutionary trends in DNA contents. Both the estimated genome sizes and the published chromosome numbers for Bonnemaisoniaceae suggest a narrow range of values consistent with the conservation of an ancestral genome.
Resumo:
Identifying homology between sex chromosomes of different species is essential to understanding the evolution of sex determination. Here, we show that the identity of a homomorphic sex chromosome pair can be established using a linkage map, without information on offspring sex. By comparing sex-specific maps of the European tree frog Hyla arborea, we find that the sex chromosome (linkage group 1) shows a threefold difference in marker number between the male and female maps. In contrast, the number of markers on each autosome is similar between the two maps. We also find strongly conserved synteny between H. arborea and Xenopus tropicalis across 200 million years of evolution, suggesting that the rate of chromosomal rearrangement in anurans is low. Finally, we show that recombination in males is greatly reduced at the centers of large chromosomes, consistent with previous cytogenetic findings. Our research shows the importance of high-density linkage maps for studies of recombination, chromosomal rearrangement and the genetic architecture of ecologically or economically important traits.
Resumo:
Colorectal cancer (CRC) is the third most common cancer and the fourth leading cause of cancer death worldwide. About 85% of the cases of CRC are known to have chromosomal instability, an allelic imbalance at several chromosomal loci, and chromosome amplification and translocation. The aim of this study is to determine the recurrent copy number variant (CNV) regions present in stage II of CRC through whole exome sequencing, a rapidly developing targeted next-generation sequencing (NGS) technology that provides an accurate alternative approach for accessing genomic variations. 42 normal-tumor paired samples were sequenced by Illumina Genome Analyzer. Data was analyzed with Varscan2 and segmentation was performed with R package R-GADA. Summary of the segments across all samples was performed and the result was overlapped with DEG data of the same samples from a previous study in the group1. Major and more recurrent segments of CNV were: gain of chromosome 7pq(13%), 13q(31%) and 20q(75%) and loss of 8p(25%), 17p(23%), and 18pq(27%). This results are coincident with the known literature of CNV in CRC or other cancers, but our methodology should be validated by array comparative genomic hybridisation (aCGH) profiling, which is currently the gold standard for genetic diagnosis of CNV.
Resumo:
Chironomidae spatial distribution was investigated at 63 near-pristine sites in 22 catchments of the Iberian Mediterranean coast. We used partial redundancy analysis to study Chironomidae community responses to a number of environmental factors acting at several spatial scales. The percentage of variation explained by local factors (23.3%) was higher than that explained by geographical (8.5%) or regional factors(8%). Catchment area, longitude, pH, % siliceous rocks in the catchment, and altitude were the best predictors of Chironomidae assemblages. We used a k-means cluster analysis to classified sites into 3 major groups based on Chironomidae assemblages. These groups were explained mainly by longitudinal zonation and geographical position, and were defined as 1) siliceous headwater streams, 2) mid-altitude streams with small catchment areas, and 3) medium-sized calcareous streams. Distinct species assemblages with associated indicator taxa were established for each stream category using IndVal analysis. Species responses to previously identified key environmental variables were determined, and optima and tolerances were established by weighted average regression. Distinct ecological requirements were observed among genera and among species of the same genus. Some genera were restricted to headwater systems (e.g., Diamesa), whereas others (e.g., Eukiefferiella) had wider ecological preferences but with distinct distributions among congenerics. In the present period of climate change, optima and tolerances of species might be a useful tool to predict responses of different species to changes in significant environmental variables, such as temperature and hydrology.
Resumo:
A common feature of natural populations is that individuals differ in morphology, physiologyand behavior (i.e .phenotype). A thorough understanding of the molecular mechanisms and evolutionary forces behind this phenotypic variation is a prerequisite for understanding evolution.This thesis examines the molecular mechanism and the roles of the different evolutionary forces in plumage colour variation in pied flycatchers (Ficedulahypoleuca). Malepied flycatchers exhibit marked variation in both pigmentary and structural plumage colourand the trait has repeatedly been suggested to be of adaptive significance. An examination of plumage colour variation on reproductive output trevealed that structural colouration, and more specifically the degree of ultraviolet (UV) reflectance had an effect on number of young sired. Paternity analyses of breeding males revealed that males that had been cuckolded by their social mate tended to be less UV reflectant than males that had not been cuckolded.Neither pigment-based norstructural colouration was found to affect the probability of siring young in other nests. Phenotypic differentiation was found to be markedly greater than differentiation at neutralgenetic markers across the pied flycatcher breeding range. Furthermore patterns of differentiationin phenotypes and selectively neutral genes were not uniform. Outlier tests searching for genomic footprints of selection revealed elevated levels of genetic divergence in a gene associated with feather development (and thus potentially structural colouration) and ultraviolet vision. Th eobserved differentiation in allelic frequencies was particularly pronounced in the Spanish piedflycatcher populations. Examining gene expression during feather development indicated that the TYRP1 gene (known to be involved in the production of black pigment) may be relevant in generating phenotypic variation in pied flycatcher plumage. Also, energy homeostasis related genesfeatured prominently among the genes found to be expressed in one extreme phenotype but not the other. This is of particular interest in light of what is known about the pleiotropy ofthe melanocortin system which underlies brown-black pigment production. The melanocortinsystem is also associated with energy homeostasis (among a number of other physiological functions) and thus the results could be pointing to the signalling function of brown-blackplumage. Plumage colour variation in pied flycatchers, both structural and pigmentary, can thus beconcluded to be exhibiting signals of non-neutral evolution. Structural colouration was found to play a role in sexual selection and putative signals of selection were further detected in acandidate gene for this trait. Evidence for non-neutral evolution of pigmentary colouration was also detected. These findings, together with the fact that preliminary evidence for an energy balance associated signalling function for plumage was found, present good starting points for further investigations into the meaning and mechanisms of plumage colour variation in piedflycatchers.
Resumo:
Leaves and fruits from 63 Stryphnodendron adstringens trees were sampled in the Rio Preto State Park to analyze allozyme segregation, tissue specific expression of allozyme loci, and their genetic parameters. The enzyme systems ADH, EST, ACP, PGM, PGI, GDH, G6PDH, GOT, IDH, LAP, MDH, PER and SKDH were assessed by means of starch-gel electrophoresis. The polymorphic systems PGI, IDH, MDH and GOT demonstrated a dimeric quaternary structure, while EST and PER were monomeric. The total expected genetic diversity (H E) for leaves and seeds were 0.325 and 0.244 respectively. The effective number of alleles per locus (A E) was 1.58 in leaves and 1.42 in seeds. The values of H E and A E observed in S. adstringens were comparatively higher than the average values seen in allozyme studies of other woody plants. The values of the fixation indices for the population, considering leaves (f = 0.070) and seeds (f = 0.107), were not significant. The high values of genetic diversity and of effective number of alleles per locus, as well as the non-significant fixation index and the adjustments of the Hardy-Weinberg proportions between generations for the pgi-1, mdh-2 and idh-1 loci, indicated random mating in this population. The enzyme systems EST and PER demonstrated their best resolution in leaf tissues, while the MDH, IDH, PGI and GOT systems demonstrated their best resolution in seed tissues.
Resumo:
Chromosome abnormalities and the mitotic index in lymphocyte cultures and micronuclei in buccal mucosa cells were investigated in a sample of underground mineral coal miners from Southern Brazil. A decreased mitotic index, an excess of micronuclei and a higher frequency of chromosome abnormalities (fragments, polyploidy and overall chromosome alterations) were observed in the miners when compared to age-paired normal controls from the same area. An alternative assay for clastogenesis in occupational exposition was tested by submitting lymphocytes from non-exposed individuals to a pool of plasmas from the exposed population. This assay proved to be very convenient, as the lymphocytes obtained from the same individuals can be used as target as well as control cells. Also, it yielded a larger number of metaphases and of successful cultures than with common lymphocyte cultures from miners. A significantly higher frequency of chromatid gaps, fragments and overall alterations were observed when lymphocytes from control subjects were exposed to miner plasma pools. Control plasma pools did not significantly induce any type of chromosome alterations in the cultures of normal subjects, thus indicating that the results are not due to the effect of the addition of plasma pools per se.
Resumo:
Several studies have demonstrated that lymphocytes from patients with Down syndrome (DS) exhibit an increased frequency of chromosome aberrations when they are exposed to ionizing radiation or to chemicals at the G0 or G1 phases of the cell cycle, but not at G2, when compared to normal subjects. To determine the susceptibility of DS lymphocytes at G2 phase, bleomycin, a radiomimetic agent, was used to induce DNA breaks in blood cultures from 24 Down syndrome patients. All the patients with DS showed free trisomy 21 (47,XX + 21 or 47,XY + 21). Individuals that showed an average number of chromatid breaks per cell higher than 0.8 were considered sensitive to the drug. No control child showed susceptibility to bleomycin, and among the 24 patients with DS, only one was sensitive to the drug. No significant difference was observed between the two groups, regarding chromatid break frequencies in treated G2 lymphocytes. The distribution of bleomycin-induced breaks in each group of chromosomes was similar for DS and controls. No significant difference was found in the response to bleomycin between male and female subjects. Probably, the main factor involved in chromosome sensitivity of lymphocytes from patients with DS is the phase of the cell cycle in which the cell is treated.
Seasonal variation in hatching pattern and chick survival in the ring-billed gull Larus delawarensis
Resumo:
The general objective of my study was to monitor proximate causes and seasonal patterns of hatching asynchrony and chick survival in the Ring-billed Gull (Larus delawarensis). Two different plots were set up at a Ring-billed Gull colony near Port Colborne, Ontario in the summer of 1992. One group was from 'peak' nesting pairs (clutches initiated between 15 April and 1 May); a second group was from 'late' nesting pairs (clutches initiated between 9 .. 22 May). Despite equal intra-clutch egg laying intervals between the peak and late periods, intra-clutch hatching intervals lengthened as the season progressed (ie. hatching became more asynchronous). Clutches from both periods were monitored for nocturnal attendance and brood patch development of parents was monitored during the egg laying period. Late nesters were characterized by an absence of nocturnal desertion, substantial brood patch defeatheration at clutch initiation and a reduction in the number of chicks fledged per pair. Chick survival to 25 days (taken as fledging) reflected patterns of chick mass at brood completion and five days post-brood completion, in peak clutches. In late clutches, survival was poor for all chicks and, was partially independent of hatching order, due in part to stochastic events such as Herring Gull predation and adverse weather. In both the peak and late periods, last-hatched C-chicks realized the poorest survival to fledging among brood mates. An artificial hatching pattern (manipulated synchrony) and an artificial hatching order were created, in three-chick broods, through a series of egg exchanges. In peak and late clutches manipulated to hatch synchronously (s; 24 h): C-chick survival to fledging did not differ from the survival of A- and B-chicks, in the peak period. In the late period, the survival of C-chicks was significantly lower than that of A-chicks. In peak clutches manipulated such that chicks from last-laid eggs (C-chicks) hatched 24 h - 48 h ahead of the A- and B- chicks, C-chick survival was greater than in controls. Within those broods, C-chicks survived better on average than both A- and B- chicks.
Resumo:
Although exceptions may be readily identified, two generalizations concerning genetic differences among species may be drawn from the available allozyme and chromosome data. First, structural gene differences among species vary widely. In many cases, species pairs do not differ more than intraspecific populations. This suggests that either very few or no gene substitutions are required to produce barriers to reproduction (Avise 1976). Second, chromosome form and/or number differs among even closely related species (White 1963; 1978; Fredga 1977; Wright 1970). Many of the observed chromosomal differences involve translocational rearrangements; these produce severe fitness depression in heterozygotes and were, thus, long considered unlikely candidates for the fixation required of genetic changes leading to speciation (Wright 1977). Nonetheless, the fact that species differences are frequently translocational argues convincingly for their fixation despite prejudices to the contrary. Haldane's rule states that in the F of interspecific crosses, the heterogametic sex is absent or sterile in the preponderance of cases (Haldane 1932). This rule definitely applies in the genus Dr°sophila (Ehrman 1962). Sex chromosome translocations do not impose a fitness depression as severe as that imposed by autosomal translocations, and X-Y translocations may account for Haldane's rule (Haldane 1932). Consequently a study of the fit ness parameters of an X·yL and a yS chromosome in Drosophila melanogaster populations was initiated by Tracey (1972). Preliminary results suggested that x.yL//YSmales enjoyed a mating advantage with X·yL//X·yL females, that this advantage was frequency dependent, that the translocation produced sexual isolation and that interactions between the yL, yS and a yellow marker contributed to the observed isolation (Tracey and Espinet 1976; Espinet and Tracey 1976). Encouraged by the results of these prelimimary studies, further experiments were performed to clarify the genetic nature of the observed sexual isolation, S the reality of the y frequency dependent fitness .and the behavioural changes, if any, produced by the translocation. The results of this work are reported herein. Although the marker genes used in earlier studies, sparkling poliert an d yellow have both been found to affect activity,but only yellow effects asymmetric sexual isolation. In addition yellow effects isolation through an interaction with the T(X-y) chromosomes, yS also effects isolation, and translocational strains are isolated from those of normal karyotype in the absence of marker gene differences. When yS chromosomes are in competition with y chromosomes on an X.yL background, yS males are at a distinct advantage only when their frequency is less than 97%. The sex chromosome translocation alters the normal courtship pattern by the incorporation of circling between vibration and licking in the male repertoire. Finally a model of speciation base on the fixation of this sex chromosome translocation in a geographically isolated gene pool is proposed.