910 resultados para Cholesterol transporters


Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this study, we compared the transport of newly synthesized cholesterol with that of influenza virus hemagglutinin (HA) from the endoplasmic reticulum to the plasma membrane. The arrival of cholesterol on the cell surface was monitored by cyclodextrin removal, and HA transport was monitored by surface trypsinization and endoglycosidase H digestion. We found that disassembly of the Golgi complex by brefeldin A treatment resulted in partial inhibition of cholesterol transport while completely blocking HA transport. Further, microtubule depolymerization by nocodazole inhibited cholesterol and HA transport to a similar extent. When the partitioning of cholesterol into lipid rafts was analyzed, we found that newly synthesized cholesterol began to associate with low-density detergent-resistant membranes rapidly after synthesis, before it was detectable on the cell surface, and its raft association increased further upon chasing. When cholesterol transport was blocked by using 15°C incubation, the association of newly synthesized cholesterol with low-density detergent-insoluble membranes was decreased and cholesterol accumulated in a fraction with intermediate density. Our results provide evidence for the partial contribution of the Golgi complex to the transport of newly synthesized cholesterol to the cell surface and suggest that detergent-resistant membranes are involved in the process.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Certain proteins contain subunits that enable their active translocation across the plasma membrane into cells. In the specific case of HIV-1, this subunit is the basic domain Tat49–57 (RKKRRQRRR). To establish the optimal structural requirements for this translocation process, and thereby to develop improved molecular transporters that could deliver agents into cells, a series of analogues of Tat49–57 were prepared and their cellular uptake into Jurkat cells was determined by flow cytometry. All truncated and alanine-substituted analogues exhibited diminished cellular uptake, suggesting that the cationic residues of Tat49–57 play a principal role in its uptake. Charge alone, however, is insufficient for transport as oligomers of several cationic amino acids (histidine, lysine, and ornithine) are less effective than Tat49–57 in cellular uptake. In contrast, a 9-mer of l-arginine (R9) was 20-fold more efficient than Tat49–57 at cellular uptake as determined by Michaelis–Menton kinetic analysis. The d-arginine oligomer (r9) exhibited an even greater uptake rate enhancement (>100-fold). Collectively, these studies suggest that the guanidinium groups of Tat49–57 play a greater role in facilitating cellular uptake than either charge or backbone structure. Based on this analysis, we designed and synthesized a class of polyguanidine peptoid derivatives. Remarkably, the subset of peptoid analogues containing a six-methylene spacer between the guanidine head group and backbone (N-hxg), exhibited significantly enhanced cellular uptake compared to Tat49–57 and even to r9. Overall, a transporter has been developed that is superior to Tat49–57, protease resistent, and more readily and economically prepared.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The amyloid precursor protein (APP) plays a crucial role in the pathogenesis of Alzheimer’s disease. During intracellular transport APP undergoes a series of proteolytic cleavages that lead to the release either of an amyloidogenic fragment called β-amyloid (Aβ) or of a nonamyloidogenic secreted form consisting of the ectodomain of APP (APPsec). It is Aβ that accumulates in the brain lesions that are thought to cause the disease. By reducing the cellular cholesterol level of living hippocampal neurons by 70% with lovastatin and methyl-β-cyclodextrin, we show that the formation of Aβ is completely inhibited while the generation of APPsec is unperturbed. This inhibition of Aβ formation is accompanied by increased solubility in the detergent Triton X-100 and is fully reversible by the readdition of cholesterol to previously depleted cells. Our results show that cholesterol is required for Aβ formation to occur and imply a link between cholesterol, Aβ, and Alzheimer’s disease.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The class B, type I scavenger receptor, SR-BI, binds high density lipoprotein (HDL) and mediates the selective uptake of HDL cholesteryl ester (CE) by cultured transfected cells. The high levels of SR-BI expression in steroidogenic cells in vivo and its regulation by tropic hormones provides support for the hypothesis that SR-BI is a physiologically relevant HDL receptor that supplies substrate cholesterol for steroid hormone synthesis. This hypothesis was tested by determining the ability of antibody directed against murine (m) SR-BI to inhibit the selective uptake of HDL CE in Y1-BS1 adrenocortical cells. Anti-mSR-BI IgG inhibited HDL CE-selective uptake by 70% and cell association of HDL particles by 50% in a dose-dependent manner. The secretion of [3H]steroids derived from HDL containing [3H]CE was inhibited by 78% by anti-mSR-BI IgG. These results establish mSR-BI as the major route for the selective uptake of HDL CE and the delivery of HDL cholesterol to the steroidogenic pathway in cultured mouse adrenal cells.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Objectives: To estimate the efficacy of dietary advice to lower blood total cholesterol concentration in free-living subjects and to investigate the efficacy of different dietary recommendations.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Objective: To compare the implications of four widely used cholesterol screening and treatment guidelines by applying them to a population in the United Kingdom.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Based on the discovery of coenzyme Q (CoQ) as an obligatory cofactor for H+ transport by uncoupling protein 1 (UCP1) [Echtay, K. S., Winkler, E. & Klingenberg, M. (2000) Nature (London) 408, 609–613] we show here that UCP2 and UCP3 are also highly active H+ transporters and require CoQ and fatty acid for H+ transport, which is inhibited by low concentrations of nucleotides. CoQ is proposed to facilitate injection of H+ from fatty acid into UCP. Human UCP2 and 3 expressed in Escherichia coli inclusion bodies are solubilized, and by exchange of sarcosyl against digitonin, nucleotide binding as measured with 2′-O-[5-(dimethylamino)naphthalene-1-sulfonyl]-GTP can be restored. After reconstitution into vesicles, Cl− but no H+ are transported. The addition of CoQ initiates H+ transport in conjunction with fatty acids. This increase is fully sensitive to nucleotides. The rates are as high as with reconstituted UCP1 from mitochondria. Maximum activity is at a molar ratio of 1:300 of CoQ:phospholipid. In UCP2 as in UCP1, ATP is a stronger inhibitor than ADP, but in UCP3 ADP inhibits more strongly than ATP. Thus UCP2 and UCP3 are regulated differently by nucleotides, in line with their different physiological contexts. These results confirm the regulation of UCP2 and UCP3 by the same factors CoQ, fatty acids, and nucleotides as UCP1. They supersede reports that UCP2 and UCP3 may not be H+ transporters.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Na+/Cl−-dependent neurotransmitter transporters form a superfamily of transmembrane proteins that share 12 membrane-spanning regions. To gain information about the quaternary structure of these transporter proteins, we heterologously expressed the glial glycine transporter GlyT1 and its neuronal homolog GlyT2 in Xenopus oocytes. By using metabolic labeling with [35S]methionine or surface labeling with a plasma membrane impermeable reagent followed by affinity purification, we separately analyzed the total cellular pools of newly synthesized GlyTs and its functional plasma membrane-bound fractions. Upon blue native gel electrophoresis, the surface-localized transporter proteins were found to exist exclusively in complex-glycosylated monomeric form, whereas a significant fraction of the intracellular GlyT1 and GlyT2 was core-glycosylated and oligomeric. In contrast, even after treatment with the crosslinker glutaraldehyde, surface GlyTs failed to migrate as oligomeric proteins. These results indicate that plasma membrane-bound GlyT1 and GlyT2 are monomeric proteins. Thus, Na+/Cl−-dependent neurotransmitter transporters do not require oligomerization for substrate translocation.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Squalene epoxidase, a membrane-associated enzyme that converts squalene to squalene 2,3-oxide, plays an important role in the maintenance of cholesterol homeostasis. In 1957, Bloch and colleagues identified a factor from rat liver cytosol termed “supernatant protein factor (SPF),” which promotes the squalene epoxidation catalyzed by rat liver microsomes with oxygen, NADPH, FAD, and phospholipid [Tchen, T. T. & Bloch, K. (1957) J. Biol. Chem. 226, 921–930]. Although purification of SPF by 11,000-fold was reported, no information is so far available on the primary structure or biological function of SPF. Here we report the cDNA cloning and expression of SPF from rat and human. The encoded protein of 403 amino acids belongs to a family of cytosolic lipid-binding/transfer proteins such as α-tocopherol transfer protein, cellular retinal binding protein, yeast phosphatidylinositol transfer protein (Sec14p), and squid retinal binding protein. Recombinant SPF produced in Escherichia coli enhances microsomal squalene epoxidase activity and promotes intermembrane transfer of squalene in vitro. SPF mRNA is expressed abundantly in the liver and small intestine, both of which are important sites of cholesterol biosynthesis. SPF is expressed significantly in isolated hepatocytes, but the expression level was markedly decreased after 48 h of in vitro culture. Moreover, SPF was not detectable in most of the cell lines tested, including HepG2 and McARH7777 hepatomas. Transfection of SPF cDNA in McARH7777 significantly stimulated de novo cholesterol biosynthesis. These data suggest that SPF is a cytosolic squalene transfer protein capable of regulating cholesterol biosynthesis.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

There is increasing evidence that sphingolipid- and cholesterol-rich microdomains (rafts) exist in the plasma membrane. Specific proteins assemble in these membrane domains and play a role in signal transduction and many other cellular events. Cholesterol depletion causes disassembly of the raft-associated proteins, suggesting an essential role of cholesterol in the structural maintenance and function of rafts. However, no tool has been available for the detection and monitoring of raft cholesterol in living cells. Here we show that a protease-nicked and biotinylated derivative (BCθ) of perfringolysin O (θ-toxin) binds selectively to cholesterol-rich microdomains of intact cells, the domains that fulfill the criteria of rafts. We fractionated the homogenates of nontreated and Triton X-100-treated platelets after incubation with BCθ on a sucrose gradient. BCθ was predominantly localized in the floating low-density fractions (FLDF) where cholesterol, sphingomyelin, and Src family kinases are enriched. Immunoelectron microscopy demonstrated that BCθ binds to a subpopulation of vesicles in FLDF. Depletion of 35% cholesterol from platelets with cyclodextrin, which accompanied 76% reduction in cholesterol from FLDF, almost completely abolished BCθ binding to FLDF. The staining patterns of BCθ and filipin in human epidermoid carcinoma A431 cells with and without cholesterol depletion suggest that BCθ binds to specific membrane domains on the cell surface, whereas filipin binding is indiscriminate to cell cholesterol. Furthermore, BCθ binding does not cause any damage to cell membranes, indicating that BCθ is a useful probe for the detection of membrane rafts in living cells.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The peroxisome proliferator-activated receptors (PPARs) are dietary lipid sensors that regulate fatty acid and carbohydrate metabolism. The hypolipidemic effects of the fibrate drugs and the antidiabetic effects of the glitazone drugs in humans are due to activation of the α (NR1C1) and γ (NR1C3) subtypes, respectively. By contrast, the therapeutic potential of the δ (NR1C2) subtype is unknown, due in part to the lack of selective ligands. We have used combinatorial chemistry and structure-based drug design to develop a potent and subtype-selective PPARδ agonist, GW501516. In macrophages, fibroblasts, and intestinal cells, GW501516 increases expression of the reverse cholesterol transporter ATP-binding cassette A1 and induces apolipoprotein A1-specific cholesterol efflux. When dosed to insulin-resistant middle-aged obese rhesus monkeys, GW501516 causes a dramatic dose-dependent rise in serum high density lipoprotein cholesterol while lowering the levels of small-dense low density lipoprotein, fasting triglycerides, and fasting insulin. Our results suggest that PPARδ agonists may be effective drugs to increase reverse cholesterol transport and decrease cardiovascular disease associated with the metabolic syndrome X.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Biochemical, epidemiological, and genetic findings demonstrate a link between cholesterol levels, processing of the amyloid precursor protein (APP), and Alzheimer's disease. In the present report, we identify the α-secretase ADAM 10 (a disintegrin and metalloprotease) as a major target of the cholesterol effects on APP metabolism. Treatment of various peripheral and neural cell lines with either the cholesterol-extracting agent methyl-β-cyclodextrin or the hydroxymethyl glutaryl-CoA reductase inhibitor lovastatin resulted in a drastic increase of secreted α-secretase cleaved soluble APP. This strong stimulatory effect was in the range obtained with phorbol esters and was further increased in cells overexpressing ADAM 10. In cells overexpressing APP, the increase of α-secretase activity resulted in a decreased secretion of Aβ peptides. Several mechanisms were elucidated as being the basis of enhanced α-secretase activity: increased membrane fluidity and impaired internalization of APP were responsible for the effect observed with methyl-β-cyclodextrin; treatment with lovastatin resulted in higher expression of the α-secretase ADAM 10. Our results demonstrate that cholesterol reduction promotes the nonamyloidogenic α-secretase pathway and the formation of neuroprotective α-secretase cleaved soluble APP by several mechanisms and suggest approaches to prevention of or therapy for Alzheimer's disease.

Relevância:

20.00% 20.00%

Publicador: