967 resultados para Chlamydia, conjunctivitis, cystitis, koalas, infertility, quantitative polymerase chain reaction
Resumo:
Left ventricular hypertrophy (LVH) is due to pressure overload or mechanical stretch and is thought to be associated with remodeling of gap-junctions. We investigated whether the expression of connexin 43 (Cx43) is altered in humans in response to different degrees of LVH. The expression of Cx43 was analyzed by quantitative polymerase chain reaction, Western blot analysis and immunohistochemistry on left ventricular biopsies from patients undergoing aortic or mitral valve replacement. Three groups were analyzed: patients with aortic stenosis with severe LVH (n=9) versus only mild LVH (n=7), and patients with LVH caused by mitral regurgitation (n=5). Cx43 mRNA expression and protein expression were similar in the three groups studied. Furthermore, immunohistochemistry revealed no change in Cx43 distribution. We can conclude that when compared with mild LVH or with LVH due to volume overload, severe LVH due to chronic pressure overload is not accompanied by detectable changes of Cx43 expression or spatial distribution.
Resumo:
Using new sensitive quantitative polymerase chain reaction (PCR) assays, cytomegalovirus (CMV) DNA is often detectable in the plasma of immunosuppressed patients. We investigated the prognostic value of a positive CMV DNA test for the development of CMV end-organ disease, other AIDS-defining events and mortality.
Resumo:
Several members of the human kallikrein-related peptidase family, including KLK6, are up-regulated in ovarian cancer. High KLK6 mRNA or protein expression, measured by quantitative polymerase chain reaction and enzyme-linked immunoassay, respectively, was previously found to be associated with a shortened overall and progression-free survival (OS and PFS, respectively). In the present study, we aimed at analyzing KLK6 protein expression in ovarian cancer tissue by immunohistochemistry. Using a newly developed monospecific polyclonal antibody, KLK6 immunoexpression was initially evaluated in normal tissues. We observed strong staining in the brain and moderate staining in the kidney, liver, and ovary, whereas the pancreas and the skeletal muscle were unreactive, which is in line with previously published results. Next, both tumor cell- and stromal cell-associated KLK6 immunoexpression were analyzed in tumor tissue specimens of 118 ovarian cancer patients. In multivariate Cox regression analysis, only stromal cell-associated expression, besides the established clinical parameters FIGO stage and residual tumor mass, was found to be statistically significant for OS and PFS [high vs. low KLK6 expression; hazard ratio (HR), 1.92; p=0.017; HR, 1.80; p=0.042, respectively]. These results indicate that KLK6 expressed by stromal cells may considerably contribute to the aggressiveness of ovarian cancer.
Resumo:
Liver cirrhosis is associated with bacterial translocation (BT) and endotoxemia. Most translocating bacteria belong to the common intestinal microbiota, suggesting a breakdown of intestinal barrier function. We hypothesized that diminished mucosal antimicrobial host defense could predispose to BT. Two rodent models of portal hypertension with increased BT were used, CCl(4)-induced ascitic cirrhosis and 2-day portal vein-ligated (PVL) animals. BT was assessed by standard microbiological techniques on mesenteric lymph nodes. Total RNA was isolated systematically throughout the intestinal tract, and expression of Paneth cell α-cryptdins and β-defensins was determined by real-time quantitative polymerase chain reaction (qPCR). To determine functional consequences, mucosal antimicrobial activity was assessed with a fluorescence-activated cell sorting assay. BT was detectable in 40% of rats with cirrhosis. Compared with the group without BT, these animals exhibited diminished intestinal Paneth cell α-cryptdin 5 and 7 expression. In contrast, PVL was associated with BT in all animals but did not affect antimicrobial peptides. The decrease in Paneth cell antimicrobials was most pronounced in the ileum and the coecum. Other antimicrobials showed no changes or even an induction in the case of BT at different sites. Antimicrobial activity toward different commensal strains was reduced, especially in the distal ileum and the cecum in experimental cirrhosis with BT (excluding PVL). Conclusion: Compromised Paneth cell antimicrobial host defense seems to predispose to BT in experimental cirrhosis. Understanding this liver-gut axis including the underlying mechanisms could help us to find new treatment avenues.
Resumo:
BACKGROUND ; AIMS: Hints, histidine triad nucleotide-binding proteins, are adenosine monophosphate-lysine hydrolases of uncertain biological function. Here we report the characterization of human Hint2. METHODS: Tissue distribution was determined by real-time quantitative polymerase chain reaction and immunoblotting, cellular localization by immunocytochemistry, and transfection with green fluorescent protein constructs. Enzymatic activities for protein kinase C and adenosine phosphoramidase in the presence of Hint2 were measured. HepG2 cell lines with Hint2 overexpressed or knocked down were established. Apoptosis was assessed by immunoblotting for caspases and by flow cytometry. Tumor growth was measured in SCID mice. Expression in human tumors was investigated by microarrays. RESULTS: Hint2 was predominantly expressed in liver and pancreas. Hint2 was localized in mitochondria. Hint2 hydrolyzed adenosine monophosphate linked to an amino group (AMP-pNA; k(cat):0.0223 s(-1); Km:128 micromol/L). Exposed to apoptotic stress, fewer HepG2 cells overexpressing Hint2 remained viable (32.2 +/- 0.6% vs 57.7 +/- 4.6%), and more cells displayed changes of the mitochondrial membrane potential (87.8 +/- 2.35 vs 49.7 +/- 1.6%) with more cleaved caspases than control cells. The opposite was observed in HepG2 cells with knockdown expression of Hint2. Subcutaneous injection of HepG2 cells overexpressing Hint2 in SCID mice resulted in smaller tumors (0.32 +/- 0.13 g vs 0.85 +/- 0.35 g). Microarray analyses revealed that HINT2 messenger RNA is downregulated in hepatocellular carcinomas (-0.42 +/- 0.58 log2 vs -0.11 +/- 0.28 log2). Low abundance of HINT2 messenger RNA was associated with poor survival. CONCLUSION: Hint2 defines a novel class of mitochondrial apoptotic sensitizers down-regulated in hepatocellular carcinoma.
Resumo:
OBJECTIVE: Rheumatoid arthritis (RA) usually improves during pregnancy and recurs postpartum. Fetal cells and cell-free DNA reach the maternal circulation during normal pregnancy. The present study investigated dynamic changes in levels of fetal DNA in serum from women with RA and inflammatory arthritis during and after pregnancy to test the hypothesis that the levels of circulating fetal DNA correlate with arthritis improvement. METHODS: Twenty-five pregnant patients were prospectively studied. A real-time quantitative polymerase chain reaction panel targeting unshared, paternally transmitted HLA sequences, a Y chromosome-specific sequence, or an insertion sequence within the glutathione S-transferase M1 gene was used to measure cell-free fetal DNA. Results were expressed as fetal genomic equivalents per milliliter (gE/ml) of maternal serum. Physical examinations were conducted during and after pregnancy. RESULTS: Levels of fetal DNA in women with improvement in or remission of arthritis were higher than those in women with active disease, especially in the third trimester. Overall, an inverse relationship between serum fetal DNA levels and disease activity was observed (P < 0.001). Serum fetal DNA increased with advancing gestation, reaching median levels of 24 gE/ml (range 0-334), 61 gE/ml (range 0-689), and 199 gE/ml (range 0-2,576) in the first, second, and third trimesters, respectively, with fetal DNA clearance observed postpartum. Arthritis improvement was initially noted in the first trimester for most patients, increased further or was sustained with advancing gestation, and was active postpartum. CONCLUSION: Changes in serum fetal DNA levels correlated with arthritis improvement during pregnancy and recurrence postpartum. Immunologic mechanisms by which pregnancy might modulate RA activity are described.
Resumo:
BACKGROUND AND OBJECTIVES. The presence of circulating hematopoietic progenitor cells in patients with myeloproliferative diseases (MPD) has been described. However, the exact nature of such progenitor cells has not been specified until now. The aim of this work was to investigate the presence of endothelial precursor cells in the blood of patients with MPD and to assess the role of the endothelial cell lineage in the pathophysiology of this disease. DESIGN AND METHODS. Endothelial progenitor cell marker expression (CD34, prominin (CD133), kinase insert domain receptor (KDR) or vascular endothelial growth factor receptor 2 (VEGFR2), and von Willebrand factor) was assessed in the blood of 53 patients with MPD by quantitative polymerase chain reaction. Clonogenic stem cell assays were performed with progenitor cells and monocytes to assess differentiation towards the endothelial cell lineage. The patients' were divided according to whether they had essential thrombocythemia (ET, n=17), polycythemia vera (PV, n=21) or chronic idiopathic myelofibrosis (CIMF, n=15) and their data compared with data from normal controls (n=16) and patients with secondary thrombo- or erythrocytosis (n=17). RESULTS. Trafficking of CD34-positive cells was increased above the physiological level in 4/17 patients with ET, 5/21 patients with PV and 13/15 patients with CIMF. A subset of patients with CIMF co-expressed the markers CD34, prominin (CD133) and KDR, suggesting the presence of endothelial precursors among the circulating progenitor cells. Clonogenic stem cell assays confirmed differentiation towards both the hematopoietic and the endothelial cell lineage in 5/10 patients with CIMF. Furthermore, the molecular markers trisomy 8 and JAK2 V617F were found in the grown endothelial cells of patients positive for trisomy 8 or JAK2 V617F in the peripheral blood, confirming the common clonal origin of both hematopoietic and endothelial cell lineages. INTERPRETATION AND CONCLUSIONS. Endothelial precursor cells are increased in the blood of a subset of patients with CIMF, and peripheral endothelial cells bear the same molecular markers as hematopoietic cells, suggesting a primary role of pathological endothelial cells in this disease.
Resumo:
BACKGROUND: Galectins are involved at different stages in inflammation. Galectin-3, although mostly described as proinflammatory, can also act as an immunomodulator by inducing apoptosis in T cells. The present study aims to determine galectin-3 expression in the normal and inflamed intestinal mucosa and to define its role in T cell activity. MATERIALS AND METHODS: Galectin-3 was detected by quantitative polymerase chain reaction with total RNA from endoscopic biopsies and by immunohistochemistry. Biopsies and peripheral blood mononuclear cells (PBMC) were stimulated in vitro and were used to assess the functional consequences of inhibition or exogenous addition of galectin-3. RESULTS: Galectin-3 is expressed at comparable levels in controls and inflammatory bowel disease (IBD) patients in remission. In the normal mucosa, galectin-3 protein was mainly observed in differentiated enterocytes, preferentially at the basolateral side. However, galectin-3 was significantly downregulated in inflamed biopsies from IBD patients. Ex vivo stimulation of uninflamed biopsies with tumor necrosis factor led to similar galectin-3 messenger RNA downregulation as in vivo. When peripheral blood mononuclear cells (PBMC) were analyzed, galectin-3 was mainly produced by monocytes. Upon mitogen stimulation, we observed increased proliferation and decreased activation-induced cell death of peripheral blood T cells in the presence of galectin-3-specific small interfering RNA. In contrast, exogenous addition of recombinant galectin-3 led to reduced proliferation of mitogen-stimulated peripheral blood T cells. CONCLUSIONS: Our results suggest that downregulation of epithelial galectin-3 in the inflamed mucosa reflects a normal immunological consequence, whereas under noninflammatory conditions, its constitutive expression may help to prevent inappropriate immune responses against commensal bacteria or food compounds. Therefore, galectin-3 may prove valuable for manipulating disease activity.
Resumo:
STUDY DESIGN: Ex vivo in vitro study evaluating a novel intervertebral disc/endplate culture system. OBJECTIVES: To establish a whole-organ intervertebral disc culture model for the study of disc degeneration in vitro, including the characterization of basic cell and organ function. SUMMARY OF BACKGROUND DATA: With current in vivo models for the study of disc and endplate degeneration, it remains difficult to investigate the complex disc metabolism and signaling cascades. In contrast, more controlled but simplified in vitro systems using isolated cells or disc fragments are difficult to culture due to the unconstrained conditions, with often-observed cell death or cell dedifferentiation. Therefore, there is a demand for a controlled culture model with preserved cell function that offers the possibility to investigate disc and endplate pathologies in a structurally intact organ. METHODS: Naturally constrained intervertebral disc/endplate units from rabbits were cultured in multi-well plates. Cell viability, metabolic activity, matrix composition, and matrix gene expression profile were monitored using the Live/Dead cell viability test (Invitrogen, Basel, Switzerland), tetrazolium salt reduction (WST-8), proteoglycan and deoxyribonucleic acid quantification assays, and quantitative polymerase chain reaction. RESULTS: Viability and organ integrity were preserved for at least 4 weeks, while proteoglycan and deoxyribonucleic acid content decreased slightly, and matrix genes exhibited a degenerative profile with up-regulation of type I collagen and suppression of collagen type II and aggrecan genes. Additionally, cell metabolic activity was reduced to one third of the initial value. CONCLUSIONS: Naturally constrained intervertebral rabbit discs could be cultured for several weeks without losing cell viability. Structural integrity and matrix composition were retained. However, the organ responded to the artificial environment with a degenerative gene expression pattern and decreased metabolic rate. Therefore, the described system serves as a promising in vitro model to study disc degeneration in a whole organ.
Resumo:
Liver fibrosis is characterized by high expression of the key profibrogenic cytokine transforming growth factor (TGF)-beta and the natural tissue inhibitor of metalloproteinases (TIMP)-1, leading to substantial accumulation of extracellular matrix. Liver fibrosis originates from various chronic liver diseases, such as chronic viral hepatitis that, to date, cannot be treated sufficiently. Thus, novel therapeutics, for example, those derived from Oriental medicine, have gained growing attention. In Korea, extracts prepared from Lindera obtusiloba are used for centuries for treatment of inflammation, improvement of blood circulation and prevention of liver damage, but experimental evidence of their efficacy is lacking. We studied direct antifibrotic effects in activated hepatic stellate cells (HSCs), the main target cell in the fibrotic liver. L. obtusiloba extract (135 mug/ml) reduced the de novo DNA synthesis of activated rat and human HSCs by about 90%, which was not accompanied by cytotoxicity of HSC, primary hepatocytes and HepG2 cells, pointing to induction of cellular quiescence. As determined by quantitative polymerase chain reaction, simultaneous treatment of HSCs with TGF-beta and L. obtusiloba extract resulted in reduction of TIMP-1 expression to baseline level, disruption of the autocrine loop of TGF-beta autoinduction and increased expression of fibrolytic matrix metalloproteinase (MMP)-3. In addition, L. obtusiloba reduced gelatinolytic activity of HSC by interfering with profibrogenic MMP-2 activity. Since L. obtusiloba extract prevented intracellular oxidative stress experimentally induced by tert-butylhydroperoxide, we concluded that the direct antifibrotic effect of L. obtusiloba extract might be mediated by antioxidant activity. Thus, L. obtusiloba, traditionally used in Oriental medicine, may complement treatment of chronic liver disease.
Resumo:
OBJECTIVE: MicroRNA (miRNA) are a class of noncoding small RNAs that act as negative regulators of gene expression. MiRNA exhibit tissue-specific expression patterns, and changes in their expression may contribute to pathogenesis. The objectives of this study were to identify miRNA expressed in articular chondrocytes, to determine changes in osteoarthritic (OA) cartilage, and to address the function of miRNA-140 (miR-140). METHODS: To identify miRNA specifically expressed in chondrocytes, we performed gene expression profiling using miRNA microarrays and quantitative polymerase chain reaction with human articular chondrocytes compared with human mesenchymal stem cells (MSCs). The expression pattern of miR-140 was monitored during chondrogenic differentiation of human MSCs in pellet cultures and in human articular cartilage from normal and OA knee joints. We tested the effects of interleukin-1beta (IL-1beta) on miR-140 expression. Double-stranded miR-140 (ds-miR-140) was transfected into chondrocytes to analyze changes in the expression of genes associated with OA. RESULTS: Microarray analysis showed that miR-140 had the largest difference in expression between chondrocytes and MSCs. During chondrogenesis, miR-140 expression in MSC cultures increased in parallel with the expression of SOX9 and COL2A1. Normal human articular cartilage expressed miR-140, and this expression was significantly reduced in OA tissue. In vitro treatment of chondrocytes with IL-1beta suppressed miR-140 expression. Transfection of chondrocytes with ds-miR-140 down-regulated IL-1beta-induced ADAMTS5 expression and rescued the IL-1beta-dependent repression of AGGRECAN gene expression. CONCLUSION: This study shows that miR-140 has a chondrocyte differentiation-related expression pattern. The reduction in miR-140 expression in OA cartilage and in response to IL-1beta may contribute to the abnormal gene expression pattern characteristic of OA.
Resumo:
The vitronectin receptor integrin alphavbeta3 promotes angiogenesis by mediating migration and proliferation of endothelial cells, but also drives fibrogenic activation of hepatic stellate cells (HSCs) in vitro. Expecting antifibrotic synergism, we studied the effect of alphavbeta3 inhibition in two in vivo models of liver fibrogenesis. Liver fibrosis was induced in rats by way of bile duct ligation (BDL) for 6 weeks or thioacetamide (TAA) injections for 12 weeks. A specific alphavbeta3 (alphavbeta5) inhibitor (Cilengitide) was given intraperitoneally twice daily at 15 mg/kg during BDL or after TAA administration. Liver collagen was determined as hydroxyproline, and gene expression was quantified by way of quantitative polymerase chain reaction. Liver angiogenesis, macrophage infiltration, and hypoxia were assessed by way of CD31, CD68 and hypoxia-inducible factor-1alpha immunostaining. Cilengitide decreased overall vessel formation. This was significant in portal areas of BDL and septal areas of TAA fibrotic rats and was associated with a significant increase of liver collagen by 31% (BDL) and 27% (TAA), and up-regulation of profibrogenic genes and matrix metalloproteinase-13. Treatment increased gamma glutamyl transpeptidase in both models, while other serum markers remained unchanged. alphavbeta3 inhibition resulted in mild liver hypoxia, as evidenced by up-regulation of hypoxia-inducible genes. Liver infiltration by macrophages/Kupffer cells was not affected, although increases in tumor necrosis factor alpha, interleukin-18, and cyclooxygenase-2 messenger RNA indicated modest macrophage activation. CONCLUSION: Specific inhibition of integrin alphavbeta3 (alphavbeta5) in vivo decreased angiogenesis but worsened biliary (BDL) and septal (TAA) fibrosis, despite its antifibrogenic effect on HSCs in vitro. Angiogenesis inhibitors should be used with caution in patients with hepatic fibrosis.
Resumo:
BACKGROUND: Periodontitis is the major cause of tooth loss in adults and is linked to systemic illnesses, such as cardiovascular disease and stroke. The development of rapid point-of-care (POC) chairside diagnostics has the potential for the early detection of periodontal infection and progression to identify incipient disease and reduce health care costs. However, validation of effective diagnostics requires the identification and verification of biomarkers correlated with disease progression. This clinical study sought to determine the ability of putative host- and microbially derived biomarkers to identify periodontal disease status from whole saliva and plaque biofilm. METHODS: One hundred human subjects were equally recruited into a healthy/gingivitis group or a periodontitis population. Whole saliva was collected from all subjects and analyzed using antibody arrays to measure the levels of multiple proinflammatory cytokines and bone resorptive/turnover markers. RESULTS: Salivary biomarker data were correlated to comprehensive clinical, radiographic, and microbial plaque biofilm levels measured by quantitative polymerase chain reaction (qPCR) for the generation of models for periodontal disease identification. Significantly elevated levels of matrix metalloproteinase (MMP)-8 and -9 were found in subjects with advanced periodontitis with Random Forest importance scores of 7.1 and 5.1, respectively. The generation of receiver operating characteristic curves demonstrated that permutations of salivary biomarkers and pathogen biofilm values augmented the prediction of disease category. Multiple combinations of salivary biomarkers (especially MMP-8 and -9 and osteoprotegerin) combined with red-complex anaerobic periodontal pathogens (such as Porphyromonas gingivalis or Treponema denticola) provided highly accurate predictions of periodontal disease category. Elevated salivary MMP-8 and T. denticola biofilm levels displayed robust combinatorial characteristics in predicting periodontal disease severity (area under the curve = 0.88; odds ratio = 24.6; 95% confidence interval: 5.2 to 116.5). CONCLUSIONS: Using qPCR and sensitive immunoassays, we identified host- and bacterially derived biomarkers correlated with periodontal disease. This approach offers significant potential for the discovery of biomarker signatures useful in the development of rapid POC chairside diagnostics for oral and systemic diseases. Studies are ongoing to apply this approach to the longitudinal predictions of disease activity.
Resumo:
OBJECTIVE: The importance of the costimulatory molecules CD28 and CTLA-4 in the pathologic mechanism of rheumatoid arthritis (RA) has been demonstrated by genetic associations and the successful clinical application of CTLA-4Ig for the treatment of RA. This study was undertaken to investigate the role of the CTLA-4/CD28 axis in the local application of CTLA-4Ig in the synovial fluid (SF) of RA patients. METHODS: Quantitative polymerase chain reaction was used to analyze the expression of proinflammatory and antiinflammatory cytokines in ex vivo fluorescence-activated cell sorted CTLA-4+ and CTLA-4- T helper cells from the peripheral blood and SF of RA patients. T helper cells were also analyzed for cytokine expression in vitro after the blockade of CTLA-4 by anti-CTLA-4 Fab fragments or of B7 (CD80/CD86) molecules by CTLA-4Ig. RESULTS: CTLA-4+ T helper cells were unambiguously present in the SF of all RA patients examined, and they expressed increased amounts of interferon-γ (IFNγ), interleukin-17 (IL-17), and IL-10 as compared to CTLA-4- T helper cells. The selective blockade of CTLA-4 in T helper cells from the SF in vitro led to increased levels of IFNγ, IL-2, and IL-17. The concomitant blockade of CD28 and CTLA-4 in T helper cells from RA SF by CTLA-4Ig in vitro resulted in reduced levels of the proinflammatory cytokines IFNγ and IL-2 and increased levels of the antiinflammatory cytokines IL-10 and transforming growth factor β. CONCLUSION: Our ex vivo and in vitro results demonstrate that the CTLA-4/CD28 axis constitutes a drug target for not only the systemic, but potentially also the local, application of the costimulation blocking agent CTLA-4Ig for the treatment of RA.
Resumo:
Organotypic slice culture explants of rat cortical tissue infected with Toxoplasma gondii tachyzoites were applied as an in vitro model to investigate host-pathogen interactions in cerebral toxoplasmosis. The kinetics of parasite proliferation and the effects of interferon-gamma (IFN-gamma) and tumor necrosis factor-alpha (TNF-alpha) in infected organotypic cultures were monitored by light microscopy, transmission electron microscopy (TEM), and quantitative polymerase chain reaction (PCR) assay. As assessed by the loss of the structural integrity of the glial fibrillary acidic protein-intermediate filament network, tachyzoites infected and proliferated mainly within astrocytes, whereas neurons and microglia remained largely unaffected. Toxoplasma gondii proliferation was severely inhibited by IFN-y. However, this inhibition was not linked to tachyzoite-to-bradyzoite stage conversion. In contrast, TNF-alpha treatment resulted in a dramatically enhanced proliferation rate of the parasite. The cellular integrity in IFN-gamma-treated organotypic slice cultures was severely impaired compared with untreated and TNF-alpha-treated cultures. Thus, on infection of organotypic neuronal cultures, IFN-gamma and TNF-alpha exhibit largely detrimental effects, which could contribute to either inhibition or acceleration of parasite proliferation during cerebral toxoplasmosis.