916 resultados para Chemistry, Organic|Chemistry, Physical


Relevância:

90.00% 90.00%

Publicador:

Resumo:

The knowledge of thermochemical parameters such as the enthalpy of formation, gas-phase basicity, and proton affinity may be the key to understanding molecular reactivity. The obtention of these thermochemical parameters by theoretical chemical models may be advantageous when experimental measurements are difficult to accomplish. The development of ab initio composite models represents a major advance in the obtention of these thermochemical parameters,. but these methods do not always lead to accurate values. Aiming at achieving a comparison between the ab initio models and the hybrid models based on the density functional theory (DFT), we have studied gamma-butyrolactone and 2-pyrrolidinone with a goal of obtaining high-quality thermochemical parameters using the composite chemical models G2, G2MP2, MP2, G3, CBS-Q, CBS-4, and CBS-QB3; the DFT methods B3LYP, B3P86, PW91PW91, mPW1PW, and B98; and the basis sets 6-31G(d), 6-31+G(d), 6-31G(d,p), 6-31+G(d,p), 6-31++G(d,p), 6-311G(d), 6-311+G(d), 6-311G(d,p), 6-311+G(d,p), 6-311++G(d,p), aug-cc-pVDZ, and aug-cc-pVTZ. Values obtained for the enthalpies of formation, proton affinity, and gas-phase basicity of the two target molecules were compared to the experimental data reported in the literature. The best results were achieved with the use of DFT models, and the B3LYP method led to the most accurate data.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

A glycosylphosphatidylinositol (GPI)-anchored enzyme (rat osseous plate alkaline phosphatase-OAP) was studied as monolayer (pure and mixed with lipids) at the air-water interface. Surface pressure and surface potential-area isotherms showed that the enzyme forms a stable monolayer and exhibits a liquid-expanded state even at surface pressure as high as 30 mN m(-1). Isotherms for mixed dimyristoylphosphatidic acid (DMPA)-OAP monolayer showed the absence of a liquid-expanded/liquid-condensed phase transition as observed for pure DMPA monolayer. In both cases, pure or mixed monolayer, the enzyme preserves its native conformation under compression at the air-water interface as observed from in situ p-polarized light Fourier transform-infrared reflection-absorption spectroscopic (FT-IRRAS) measurements. Changes in orientation and conformation of the enzyme due to the presence or absence of DMPA, as well as due to the surface compression, are discussed. (C) 2008 Published by Elsevier Inc.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Alcohols and acids can be switched to produce ethers or esters by varying the alcohol to catalyst mol ratio, in a new etherification and esterification method using NbCl5/Al2O3 catalyst under ""solvent free"" conditions and promoted by MW (microwave) irradiation. A ""two sites"" mechanism for the reaction is proposed, in an attempt to clarify the tendency of the catalyst to be dependent on the alcohol alone during the esterification process. (c) 2008 Elsevier B.V. All rights reserved.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Surface pressure (pi)-molecular area (A) curves were used to characterize the packing of pseudo-ternary mixed Langmuir monolayers of egg phosphatidylcholine (EPC), 1,2-dioleoyl-3-trimethylammonium propane (DOTAP) and L-alpha-dioleoyl phosphatidylethanolamine (DOPE). This pseudo-ternary mixture EPC/DOPE/DOTAP has been successfully employed in liposome formulations designed for DNA non-viral vectors. Pseudo-binary mixtures were also studied as a control. Miscibility behavior was inferred from pi-A curves applying the additivity rule by calculating the excess free energy of mixture (Delta G(Exc)). The interaction between the lipids was also deduced from the surface compressional modulus (C(s)(-1)). The deviation from ideality shows dependence on the lipid polar head type and monolayer composition. For lower DOPE concentrations, the forces are predominantly attractive. However, if the monolayer is DOPE rich, the DOTAP presence disturbs the PE-PE intermolecular interaction and the net interaction is then repulsive. The ternary monolayer EPC/DOPE/DOTAP presented itself in two configurations, modulated by the DOPE content, in a similar behavior to the DOPE/DOTAP monolayers. These results contribute to the understanding of the lipid interactions and packing in self-assembled systems associated with the in vitro and in vivo stability of liposomes. (C) 2010 Elsevier B.V. All rights reserved.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

The (2,3)J(CH) dependence on dihedral angle (theta H-C-C-X) for cyclopentane derivatives was investigated. We observed that the combined use of experimentally obtained (2,3)J(CH) values and the theoretically determined dihedral angles between the corresponding nuclei can be used to infer the relative stereochemistry of the ring substituents in cyclopentane derivatives. There is a good correlation between the magnitude of (3)J(CH) and the dihedral angle between the hydrogen and the coupled carbon (R-2 = 0.88). Copyright (C) 2008 John Wiley & Sons, Ltd.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

In this work, an investigation of the electrical and electrochemical properties responsible for the energy storage capability of nanocomposites has been carried out. We demonstrate that, in the case of the V2O5 xerogel and the nanocomposites polypyrrole (Ppy)/V2O5 and polyaniline (PANI)/V2O5, the quadratic logistic equation (QLE) can be used to fit the inverse of the resistance values as a function of the injected charge in non-steady-state conditions. This contributes to a phenomenological understanding of the lithium ion and electron transport. The departure of the experimental curve from the fitting observed for the V2O5 xerogel can be attributed to the trapping sites formed during the lithium electroinsertion, which was observed by electrochemical impedance spectroscopy. The amount of trapping sites was obtained on the basis of the QLE. Similar values used to fit the inverse of the resistance were also used to fit the absorbance changes, which is also associated with the small polaron hopping from the V(IV) to the V(V) sites. On the other hand, there was good agreement between the experimental and the theoretical data when the profile of the inverse of the resistance as a function of the amount of inserted lithium ions of the nanocomposites Ppy/V2O5 and PANI/ V2O5 was concerned. We suggest that the presence of the conducting polymers is responsible for the different electrical profile of the V2O5 xerogel compared with those of the nanocomposites. In the latter case, interactions between the lithium ions and oxygen atoms from V2O5 are shielded, thus decreasing the trapping effect of lithium ions in the V2O5 sites. The different values of the lithium ion diffusion coefficient into these intercalation materials are in agreement with this hypothesis.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Different compositions of Pt, PtNi, PtSn, and PtSnNi electrocatalysts supported on carbon Vulcan XC-72 were prepared through thermal decomposition of polymeric precursors. The nanoparticles were characterized by morphological and structural analyses (XRD, TEM, and EDX). XRD results revealed a face-centered cubic structure for platinum, and there was evidence that Ni and Sn atoms are incorporated into the Pt structure. The electrochemical investigation was carried out in slightly acidic medium (H(2)SO(4) 0.05 mol L(-1)), in the absence and in the presence of ethanol. Addition of Ni to Pt/C and PtSn/C catalysts significantly shifted the onset of ethanol and CO oxidations toward lower potentials, thus enhancing the catalytic activity, especially in the case of the ternary PtSnNi/C composition. Electrolysis of ethanol solutions at 0.4 V us. RHE allowed for determination of acetaldehyde and acetic acid as the reaction products, as detected by HPLC analysis. Due to the high concentration of ethanol employed in the electrolysis experiments (1.0 mol L(-1)), no formation of CO(2) was observed. Copyright (C) 2010, Hydrogen Energy Publications, LLC. Published by Elsevier Ltd. All rights reserved.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

A surfactant-mediated solution route for the obtainment of nanosized rare-earth orthophosphates of different compositions (LaPO(4):Eu(3+), (Y,Gd)PO(4):Eu(3+),LaPO(4):Tm(3+), YPO(4):Tm(3+), and YbPO(4):Er(3+)) is presented, and the implications of the morphology control on the solids properties are discussed. The solids are prepared in water-in-heptane microemulsions, using cetyltrimethylammonium bromide and 1-butanol as the surfactant and cosurfactant; the alteration of the starting microemulsion composition allows the obtainment of similar to 30 nm thick nanorods with variable length. The morphology and the structure of the solids were evaluated through scanning electron microscopy and through powder X-ray diffractometry; dynamic light scattering and thermal analyses were also performed. The obtained materials were also characterized through vibrational (FTIR) and luminescence spectroscopy (emission/excitation, luminescence lifetimes, chromaticity, and quantum efficiency), where the red, blue, and upconversion emissions of the prepared phosphors were evaluated.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

The behavior of Pt/C and Pt-RuO(x)/C electrodes subjected to a larger number of potential scans and constant potential for prolonged time periods was investigated in the absence and presence of methanol. The structural changes were analyzed on the basis of the modifications observed in the X-ray diffraction pattern of the catalysts. Carbon monoxide stripping experiments were performed before and after the potential scans, thus enabling analysis of the behavior of the electrochemically active surface area. The resulting solutions were examined by inductively coupled plasma mass spectrometry (ICP-MS). There was reduction in the electrochemically active surface area, as well as increase in crystallite size and dissolution of catalyst components after the potential scan tests. Catalyst degradation was more pronounced in the presence of methanol, and cyclic potential conditions accelerate the degradation mechanisms. (C) 2010 Professor T. Nejat Veziroglu. Published by Elsevier Ltd. All rights reserved.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Tissue-nonspecific alkaline phosphatase (TNAP), present on the surface of chondrocyte- and osteoblast-derived matrix vesicles (MVs), plays key enzymatic functions during endochondral ossification. Many studies have shown that MVs are enriched in TNAP and also in cholesterol compared to the plasma membrane. Here we have studied the influence of cholesterol on the reconstitution of TNAP into dipalmitoylphosphatidylcholine (DPPC)-liposomes, monitoring the changes in lipid critical transition temperature (T(c)) and enthalpy variation (Delta H) using differential scanning calorimetry (DSC). DPPC-liposomes revealed a T(c) of 41.5 degrees C and Delta H of 7.63 Kcal mol(-1). The gradual increase in cholesterol concentration decrease Delta H values, reaching a Delta H of 0.87 Kcal mol(-1) for DPPC: cholesterol system with 36 mol% of cholesterol. An increase in T(c), up to 47 degrees C for the DPPC:cholesterol liposomes (36 mol% of Chol), resulted from the increase in the area per molecule in the gel phase. TNAP (0.02 mg/mL) reconstitution was done with protein:lipid 1:10,000 (molar ratio), resulting in 85% of the added enzyme being incorporated. The presence of cholesterol reduced the incorporation of TNAP to 42% of the added enzyme when a lipid composition of 36 mol% of Chol was used. Furthermore, the presence of TNAP in proteoliposomes resulted in a reduction in Delta H. The gradual proportional increase of cholesterol in liposomes results in broadening of the phase transition peak and eventually eliminates the cooperative gel-to-liquid-crystalline phase transition of phospholipids bilayers. Thus, the formation of microdomains may facilitate the clustering of enzymes and transporters known to be functional in MVs during endochondral ossification. (C) 2010 Elsevier B.V. All rights reserved.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

The interaction between a hydrophobically modified 5,10,15,20-tetrakis(4-N-tetradecyl-pyridyl) porphyrin and three phospholipids: two negatively charged, DMPA (the sodium salt of dimyristoyl-sn-glycero-phosphatidyl acid) and DMPG (the sodium salt of 1,2-dimyristoyl-sn-glycero-3-[phospho-rac-(1-glycerol)]) and a zwitterionic DMPC (dimyristoyl-sn-glycero-phosphatidylcholine), were studied by means of surface pressure isotherms and spectroscopic methods. The interaction results in partial or total metallation of the porphyrin with zinc ions in the presence of negatively charged phospholipids, as attested by UV-vis and luminescence spectroscopy of the transferred films. In the presence of the zwitterionic phospholipid no insertion of zinc ion in the porphyrin ring is detected. These results are relevant for the understanding of photosensitizer-lipid-carrier binding for use in photodynamic therapy. (C) 2010 Elsevier Inc. All rights reserved.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

In the current work, we studied the effect of the nonionic detergent dodecyloctaethyleneglycol, C(12)E(8), on the structure and oligomeric form of the Na,K-ATPase membrane enzyme (sodium-potassium pump) in aqueous suspension, by means of small-angle X-ray scattering (SAXS). Samples composed of 2 mg/mL of Na,K-ATPase, extracted from rabbit kidney medulla, in the presence of a small amount of C(12)E(8) (0.005 mg/mL) and in larger concentrations ranging from 2.7 to 27 mg/mL did not present catalytic activity. Under this condition, an oligomerization of the alpha subunits is expected. SAXS data were analyzed by means of a global fitting procedure supposing that the scattering is due to two independent contributions: one coming from the enzyme and the other one from C(12)E(8) micelles. In the small detergent content (0.005 mg/mL), the SAXS results evidenced that Na,K-ATPase is associated into aggregates larger than (alpha beta)(2) form. When 2.7 mg/mL of C(12)E(8) is added, the data analysis revealed the presence of alpha(4) aggregates in the solution and some free micelles. Increasing the detergent amount up to 27 mg/mL does not disturb the alpha(4) aggregate: just more micelles of the same size and shape are proportionally formed in solution. We believe that our results shed light on a better understanding of how nonionic detergents induce subunit dissociation and reassembling to minimize the exposure of hydrophobic residues to the aqueous solvent.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

The problem of the negative values of the interaction parameter in the equation of Frumkin has been analyzed with respect to the adsorption of nonionic molecules on energetically homogeneous surface. For this purpose, the adsorption states of a homologue series of ethoxylated nonionic surfactants on air/water interface have been determined using four different models and literature data (surface tension isotherms). The results obtained with the Frumkin adsorption isotherm imply repulsion between the adsorbed species (corresponding to negative values of the interaction parameter), while the classical lattice theory for energetically homogeneous surface (e.g., water/air) admits attraction alone. It appears that this serious contradiction can be overcome by assuming heterogeneity in the adsorption layer, that is, effects of partial condensation (formation of aggregates) on the surface. Such a phenomenon is suggested in the Fainerman-Lucassen-Reynders-Miller (FLM) 'Aggregation model'. Despite the limitations of the latter model (e.g., monodispersity of the aggregates), we have been able to estimate the sign and the order of magnitude of Frumkin's interaction parameter and the range of the aggregation numbers of the surface species. (C) 2004 Elsevier B.V All rights reserved.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

The direct E/Z configuration assignment of tri- and tetra-substituted stilbenes (and other analogous olefins) when only one of the isomers is available is a quite challenging task. Sometimes, a chemical transformation or some other tedious method is necessary for determination of the double bond substitution pattern. In this paper, we relied on theoretical calculation of chemical shifts as a complementary tool for (1)H NMR determination of the configuration of an alpha-phenylcinnamic acid prepared as a unique isomer by the Perkin reaction. (C) 2010 Elsevier B.V. All rights reserved.