998 resultados para Chaná
Resumo:
Many properties of single-walled carbon nanotube (SWCNT) arrays are determined by the size and surface coverage of the metal catalyst islands from which they are nucleated. Methods using thermal fragmentation of continuous metal films frequently fail to produce size-uniform islands. Hybrid numerical simulations are used to propose a new approach to controlled self-assembly of Ni islands of the required size and surface coverage using tailored gas-phase generated nanocluster fluxes and adjusted surface temperatures. It is shown that a maximum surface coverage of 0.359 by 0.96-1.02 nm Ni catalyst islands can be achieved at a low surface temperature of 500 K. Optimized growth of Ni catalyst islands can lead to fabrication of size-uniform SWCNT arrays, suitable for numerous nanoelectronic applications. This approach is deterministic and is applicable to a range of nanoassemblies where high surface coverage and island size uniformity are required.
Resumo:
We demonstrate the first biaxial fiber Bragg grating (FBG) accelerometer using axial and transverse forces. An inertial object is fixed at the middle of two FBGs inscribed in one fiber. The difference between the resonant wavelengths of the two FBGs can distinguish the acceleration in the axial direction, while being insensitive in the transverse direction. The average of the resonant wavelengths of the two FBGs can distinguish the acceleration in the transverse direction, while being insensitive in the axial direction. In the experiments, when the transverse direction was vertical, the crest-to-trough sensitivity at 5 Hz and resonant frequency of the average were 0.545 nm/g and 34.42 Hz, respectively. When the axial direction was vertical, those of the difference were 0.0454 nm/g and 900 Hz, respectively. For each FBG, the crest-to-trough sensitivity at 5 Hz and resonant frequency in the transverse/vertical direction were 24 and 1/26 times those in the axial/vertical direction, respectively.
Resumo:
In various parts of the world, Indigenous and non-Indigenous peoples are actively working towards Reconciliation. In Australia, the context in which we each undertake our work as educationalists and researchers, the Reconciliation agenda has been pushed into schools and English teachers have been called on to share responsibility for facilitating the move towards a new national order. The recently introduced Australian Curriculum mandates that Aboriginal and Torres Strait Islander Histories and Cultures be embedded with “a strong” but “varying presence” into each learning area (Australian Curriculum, Assessment and Reporting Authority, 2013). In this paper we consider the tensions between policy and practice, when discourses external to education are recontextualised into the discipline of English. We do so by applying an analytical framework based on Bernstein’s (1990, 1996,2000) sociological theories about the structure of instructional and regulative discourses. Our findings suggest that the space to exert Reconciliatory agendas in the Australian Curriculum English is ambiguous and thus holds the potential to not only marginalise Indigenous knowledges but also to create tensions between policy and practice for non-Indigenous teachers of English.
Resumo:
As printed and flexible plastic electronic gadgets become increasingly viable today, there is a need to develop materials that suit the fabrication processes involved. Two desirable requirements are solution-processable active materials or precursors and low-temperature processability. In this article, we describe a straightforward method of depositing ZnO films by simple spin coating of an organometallic diethylzinc precursor solution and annealing the resulting film at low temperatures (≤200 °C) without involving any synthetic steps. By controlling the humidity in which annealing is conducted, we are able to adjust the intrinsic doping level and carrier concentration in diethylzinc-derived ZnO. Doped or conducting transport layers are greatly preferable to undoped layers as they enable low-resistance contacts and minimize the potential drops. This ability to controllably realize doped ZnO is a key feature of the fabrication process that we describe in this article. We employ field-effect measurements as a diagnostic tool to measure doping levels and mobilities in ZnO and demonstrate that doped ZnO with high charge carrier concentration is ideal for solar cell applications. Respectable power conversion efficiencies (up to 4.5%) are achieved in inverted solar cells that incorporate diethylzinc-derived ZnO films as the electron transport layer and organic blends as the active material. Extensions of this approach to grow ternary and quaternary films with organometallic precursor chemicals will enable solution based growth of a number of semiconductor films as well as a method to dope them.
Resumo:
Commercial products using organic light emitting diode (OLED) display technology have begun to appear in cell phones, mp3 players and even televisions. One key area that has allowed and will allow for this technology to continue its ascension into the flat panel display and lighting markets is materials R and D. From this perspective, recent progress in cubic silsesquioxane (SSQ) based materials may provide some new advantageous properties well suited for OLEDs. In this feature article we provide an overview of recent progress in the synthesis, characterization and implementation of SSQ-based materials with properties well suited for application in solution processable organic/polymer electronics, specifically OLEDs.
Resumo:
Heterojunction organic photovoltaics have been the subject of intensive academic interest over the past two decades, and significant commercial efforts have been directed towards this area with the vision of developing the next generation of low-cost solar cells. Materials development has played a vital role in the dramatic improvement of organic solar cell performance in recent years, and this is driven primarily by the advancement of p-type semiconductors as donor materials. With the highest performing solar cells today dominated by acceptors based on members of the fullerene family, much less attention has been devoted to other classes of n-type acceptors. In this review, we will provide an overview of the progress in the synthesis, characterization and implementation of the various classes of non-fullerenebased n-type organic acceptors for photovoltaic applications.
Resumo:
Introduction and aims: Despite evidence that many Australian adolescents have considerable experience with various drug types, little is known about the extent to which adolescents use multiple substances. The aim of this study was to examine the degree of clustering of drug types within individuals, and the extent to which demographic and psychosocial predictors are related to cluster membership. Design and method: A sample of 1402 adolescents aged 12-17. years were extracted from the Australian 2007 National Drug Strategy Household Survey. Extracted data included lifetime use of 10 substances, gender, psychological distress, physical health, perceived peer substance use, socioeconomic disadvantage, and regionality. Latent class analysis was used to determine clusters, and multinomial logistic regression employed to examine predictors of cluster membership. Result: There were 3 latent classes. The great majority (79.6%) of adolescents used alcohol only, 18.3% were limited range multidrug users (encompassing alcohol, tobacco, and marijuana), and 2% were extended range multidrug users. Perceived peer drug use and psychological distress predicted limited and extended multiple drug use. Psychological distress was a more significant predictor of extended multidrug use compared to limited multidrug use. Discussion and conclusion: In the Australian school-based prevention setting, a very strong focus on alcohol use and the linkages between alcohol, tobacco and marijuana are warranted. Psychological distress may be an important target for screening and early intervention for adolescents who use multiple drugs.
Resumo:
ABL inhibitors have revolutionized the clinical management of chronic myeloid leukemia, but the BCR-ABLT315I mutation confers resistance to currently approved drugs. Chan et al. show, in this issue of Cancer Cell, that " switch-control" inhibitors block BCR-ABLT315I activity by preventing ABL from switching from the inactive to active conformation.
Green tea attenuates cardiovascular remodelling and metabolic symptoms in high carbohydrate-fed rats