998 resultados para ChRM, Declination
Meteorological observations during INFANTA cruise from Montevideo to La Coruña started at 1774-03-16
Meteorological observations during SPHINX cruise from Lizard to Cape St. Marie started at 1750-06-19
Resumo:
Obtaining long, continuous, and undisturbed sections of unconsolidated Neogene deep sea sedimentary sections has been limited by (1) practical length of piston cores to about 30 meters and (2) disturbance of sediment by rotary drilling with Glomar Challenger. The relatively high deposition rates of late Neogene sediments in the North Atlantic and in the Caribbean in particular has limited penetration, with conventional piston coring, to sediments not much older than late Pliocene in the Atlantic and not even through the late Pleistocene in the Caribbean. Rotary drilling has penetrated much older sediments in both areas, but the cores suffered extensive drilling disturbance that seriously degrades the Paleomagnetism of the material. Utilization of the hydraulic piston corer on the Challenger combines the advantage of a generally undisturbed recovery and great penetration to produce long, relatively undisturbed sections of late Neogene and Quaternary sediments suitable for paleomagnetic studies. In this chapter we present paleomagnetic data from Site 502. We tried to determine relative azimuthal orientation of successive cores (see Introduction for details). Because the low latitude of the site meant a small (inclination of about 22°) vertical component of magnetization, reversals of magnetization could easily be detected only in changes in the horizontal component, as 180° shifts in the declination direction of magnetization. Based on information from the core orienting device, a fiducial line was drawn the length of each core prior to cutting it into the standard 1.5 meter sections.
Resumo:
Paleomagnetic studies on sediments recovered during Leg 136 have yielded a polarity reversal sequence that can be compared with the global magnetic reversal time scale to establish a sedimentation rate for Hole 842B. This sedimentation rate is substantially higher than that normally observed in the central Pacific basin probably as a result of the contribution of volcanic ash to the normal pelagic sources of sediment. The basalt samples from the oceanic crust at Site 843 have been used to determine a paleolatitude of 10.2°S for the 110±2 m.y.-old crust from this site. Detailed studies of the polarity transitions yielded few intermediate directions, but these few records provide support for the "Americas" transitional path observed at other continental and marine sites in Europe and North America.