908 resultados para Cell vertex finite volume method
Resumo:
The purpose of this work is to analyze a complex high lift configuration for which significant regions of separated flow are present. Current state of the art methods have some diffculty to predict the origin and the progression of this separated flow when increasing the angle of attack. The mechanisms responsible for the maximum lift limit on multi-element wing con?gurations are not clear; this stability analysis could help to understand the physics behind the phenomenon and to find a relation between the flow separation and the instability onset. The methodology presented herein consists in the computation of a steady base flow solution based on a finite volume discretization and a proposal of the solution for a generalized eigenvalue problem corresponding to the perturbed and linearized problem. The eigenvalue problem has been solved with the Arnoldi iterative method, one of the Krylov subspace projection methods. The described methodology was applied to the NACA0012 test case in subsonic and in transonic conditions and, finally, for the first time to the authors knowledge, on an industrial multi-component geometry, such as the A310 airfoil, in order to identify low frequency instabilities related to the separation. One important conclusion is that for all the analyzed geometries, one unstable mode related to flow separation appears for an angle of attack greater than the one correspondent to the maximum lift coe?cient condition. Finally, an adjoint study was carried out in order to evaluate the receptivity and the structural sensitivity of the geometries, giving an indication of the domain region that could be modified resulting in the biggest change of the flowfield.
Resumo:
El tiempo de concentración de una cuenca sigue siendo relativamente desconocido para los ingenieros. El procedimiento habitual en un estudio hidrológico es calcularlo según varias fórmulas escogidas entre las existentes para después emplear el valor medio obtenido. De esta media se derivan los demás resultados hidrológicos, resultados que influirán en el futuro dimensionamiento de las infraestructuras. Este trabajo de investigación comenzó con el deseo de conseguir un método más fiable y objetivo que permitiera obtener el tiempo de concentración. Dada la imposibilidad de poner en práctica ensayos hidrológicos en una cuenca física real, ya que no resulta viable monitorizar perfectamente la precipitación ni los caudales de salida, se planteó llevar a cabo los ensayos de forma simulada, con el empleo de modelos hidráulicos bidimensionales de lluvia directa sobre malla 2D de volúmenes finitos. De entre todos los disponibles, se escogió InfoWorks ICM, por su rapidez y facilidad de uso. En una primera fase se efectuó la validación del modelo hidráulico elegido, contrastando los resultados de varias simulaciones con la formulación analítica existente. Posteriormente, se comprobaron los valores de los tiempos de concentración obtenidos con las expresiones referenciadas en la bibliografía, consiguiéndose resultados muy satisfactorios. Una vez verificado, se ejecutaron 690 simulaciones de cuencas tanto naturales como sintéticas, incorporando variaciones de área, pendiente, rugosidad, intensidad y duración de las precipitaciones, a fin de obtener sus tiempos de concentración y retardo. Esta labor se realizó con ayuda de la aceleración del cálculo vectorial que ofrece la tecnología CUDA (Arquitectura Unificada de Dispositivos de Cálculo). Basándose en el análisis dimensional, se agruparon los resultados del tiempo de concentración en monomios adimensionales. Utilizando regresión lineal múltiple, se obtuvo una nueva formulación para el tiempo de concentración. La nueva expresión se contrastó con las formulaciones clásicas, habiéndose obtenido resultados equivalentes. Con la exposición de esta nueva metodología se pretende ayudar al ingeniero en la realización de estudios hidrológicos. Primero porque proporciona datos de manera sencilla y objetiva que se pueden emplear en modelos globales como HEC-HMS. Y segundo porque en sí misma se ha comprobado como una alternativa realmente válida a la metodología hidrológica habitual. Time of concentration remains still fairly imprecise to engineers. A normal hydrological study goes through several formulae, obtaining concentration time as the median value. Most of the remaining hydrologic results will be derived from this value. Those results will determine how future infrastructures will be designed. This research began with the aim to acquire a more reliable and objective method to estimate concentration times. Given the impossibility of carrying out hydrological tests in a real watershed, due to the difficulties related to accurate monitoring of rainfall and derived outflows, a model-based approach was proposed using bidimensional hydraulic simulations of direct rainfall over a 2D finite-volume mesh. Amongst all of the available software packages, InfoWorks ICM was chosen for its speed and ease of use. As a preliminary phase, the selected hydraulic model was validated, checking the outcomes of several simulations over existing analytical formulae. Next, concentration time values were compared to those resulting from expressions referenced in the technical literature. They proved highly satisfactory. Once the model was properly verified, 690 simulations of both natural and synthetic basins were performed, incorporating variations of area, slope, roughness, intensity and duration of rainfall, in order to obtain their concentration and lag times. This job was carried out in a reasonable time lapse with the aid of the parallel computing platform technology CUDA (Compute Unified Device Architecture). Performing dimensional analysis, concentration time results were isolated in dimensionless monomials. Afterwards, a new formulation for the time of concentration was obtained using multiple linear regression. This new expression was checked against classical formulations, obtaining equivalent results. The publication of this new methodology intends to further assist the engineer while carrying out hydrological studies. It is effective to provide global parameters that will feed global models as HEC-HMS on a simple and objective way. It has also been proven as a solid alternative to usual hydrology methodology.
Resumo:
Arch bridge structural solution has been known for centuries, in fact the simple nature of arch that require low tension and shear strength was an advantage as the simple materials like stone and brick were the only option back in ancient centuries. By the pass of time especially after industrial revolution, the new materials were adopted in construction of arch bridges to reach longer spans. Nowadays one long span arch bridge is made of steel, concrete or combination of these two as "CFST", as the result of using these high strength materials, very long spans can be achieved. The current record for longest arch belongs to Chaotianmen bridge over Yangtze river in China with 552 meters span made of steel and the longest reinforced concrete type is Wanxian bridge which also cross the Yangtze river through a 420 meters span. Today the designer is no longer limited by span length as long as arch bridge is the most applicable solution among other approaches, i.e. cable stayed and suspended bridges are more reasonable if very long span is desired. Like any super structure, the economical and architectural aspects in construction of a bridge is extremely important, in other words, as a narrower bridge has better appearance, it also require smaller volume of material which make the design more economical. Design of such bridge, beside the high strength materials, requires precise structural analysis approaches capable of integrating the combination of material behaviour and complex geometry of structure and various types of loads which may be applied to bridge during its service life. Depend on the design strategy, analysis may only evaluates the linear elastic behaviour of structure or consider the nonlinear properties as well. Although most of structures in the past were designed to act in their elastic range, the rapid increase in computational capacity allow us to consider different sources of nonlinearities in order to achieve a more realistic evaluations where the dynamic behaviour of bridge is important especially in seismic zones where large movements may occur or structure experience P - _ effect during the earthquake. The above mentioned type of analysis is computationally expensive and very time consuming. In recent years, several methods were proposed in order to resolve this problem. Discussion of recent developments on these methods and their application on long span concrete arch bridges is the main goal of this research. Accordingly available long span concrete arch bridges have been studied to gather the critical information about their geometrical aspects and properties of their materials. Based on concluded information, several concrete arch bridges were designed for further studies. The main span of these bridges range from 100 to 400 meters. The Structural analysis methods implemented in in this study are as following: Elastic Analysis: Direct Response History Analysis (DRHA): This method solves the direct equation of motion over time history of applied acceleration or imposed load in linear elastic range. Modal Response History Analysis (MRHA): Similar to DRHA, this method is also based on time history, but the equation of motion is simplified to single degree of freedom system and calculates the response of each mode independently. Performing this analysis require less time than DRHA. Modal Response Spectrum Analysis (MRSA): As it is obvious from its name, this method calculates the peak response of structure for each mode and combine them using modal combination rules based on the introduced spectra of ground motion. This method is expected to be fastest among Elastic analysis. Inelastic Analysis: Nonlinear Response History Analysis (NL-RHA): The most accurate strategy to address significant nonlinearities in structural dynamics is undoubtedly the nonlinear response history analysis which is similar to DRHA but extended to inelastic range by updating the stiffness matrix for every iteration. This onerous task, clearly increase the computational cost especially for unsymmetrical buildings that requires to be analyzed in a full 3D model for taking the torsional effects in to consideration. Modal Pushover Analysis (MPA): The Modal Pushover Analysis is basically the MRHA but extended to inelastic stage. After all, the MRHA cannot solve the system of dynamics because the resisting force fs(u; u_ ) is unknown for inelastic stage. The solution of MPA for this obstacle is using the previously recorded fs to evaluate system of dynamics. Extended Modal Pushover Analysis (EMPA): Expanded Modal pushover is a one of very recent proposed methods which evaluates response of structure under multi-directional excitation using the modal pushover analysis strategy. In one specific mode,the original pushover neglect the contribution of the directions different than characteristic one, this is reasonable in regular symmetric building but a structure with complex shape like long span arch bridges may go through strong modal coupling. This method intend to consider modal coupling while it take same time of computation as MPA. Coupled Nonlinear Static Pushover Analysis (CNSP): The EMPA includes the contribution of non-characteristic direction to the formal MPA procedure. However the static pushovers in EMPA are performed individually for every mode, accordingly the resulted values from different modes can be combined but this is only valid in elastic phase; as soon as any element in structure starts yielding the neutral axis of that section is no longer fixed for both response during the earthquake, meaning the longitudinal deflection unavoidably affect the transverse one or vice versa. To overcome this drawback, the CNSP suggests executing pushover analysis for governing modes of each direction at the same time. This strategy is estimated to be more accurate than MPA and EMPA, moreover the calculation time is reduced because only one pushover analysis is required. Regardless of the strategy, the accuracy of structural analysis is highly dependent on modelling and numerical integration approaches used in evaluation of each method. Therefore the widely used Finite Element Method is implemented in process of all analysis performed in this research. In order to address the study, chapter 2, starts with gathered information about constructed long span arch bridges, this chapter continuous with geometrical and material definition of new models. Chapter 3 provides the detailed information about structural analysis strategies; furthermore the step by step description of procedure of all methods is available in Appendix A. The document ends with the description of results and conclusion of chapter 4.
Resumo:
La aparición de inestabilidades en un flujo es un problema importante que puede afectar a algunas aplicaciones aerodinámicas. De hecho existen diferentes tipos de fenómenos no-estacionarios que actualmente son tema de investigación; casos como la separación a altos ángulos de ataque o el buffet transónico son dos ejemplos de cierta relevancia. El análisis de estabilidad global permite identificar la aparición de dichas condiciones inestables, proporcionando información importante sobre la región donde la inestabilidad es dominante y sobre la frecuencia del fenómeno inestable. La metodología empleada es capaz de calcular un flujo base promediado mediante una discretización con volúmenes finitos y posteriormente la solución de un problema de autovalores asociado a la linealización que aparece al perturbar el flujo base. El cálculo numérico se puede dividir en tres pasos: primero se calcula una solución estacionaria para las ecuaciones RANS, luego se extrae la matriz del Jacobiano que representa el problema linealizado y finalmente se deriva y se resuelve el problema de autovalores generalizado mediante el método iterativo de Arnoldi. Como primer caso de validación, la técnica descrita ha sido aplicada a un cilindro circular en condiciones laminares para detectar el principio de las oscilaciones de los vórtices de von Karman, y se han comparado los resultados con experimentos y cálculos anteriores. La parte más importante del estudio se centra en el análisis de flujos compresibles en régimen turbulento. La predicción de la aparición y la progresión de flujo separado a altos ángulos de ataque se han estudiado en el perfil NACA0012 en condiciones tanto subsónicas como supersónicas y en una sección del ala del A310 en condiciones de despegue. Para todas las geometrías analizadas, se ha podido observar que la separación gradual genera la aparición de un modo inestable específico para altos ángulos de ataque siempre mayores que el ángulo asociado al máximo coeficiente de sustentación. Además, se ha estudiado el problema adjunto para obtener información sobre la zona donde una fuerza externa provoca el máximo cambio en el campo fluido. El estudio se ha completado calculando el mapa de sensibilidad estructural y localizando el centro de la inestabilidad. En el presente trabajo de tesis se ha analizado otro importante fenómeno: el buffet transónico. En condiciones transónicas, la interacción entre la onda de choque y la capa límite genera una oscilación de la posición de la onda de choque y, por consiguiente, de las fuerzas aerodinámicas. El conocimiento de las condiciones críticas y su origen puede ayudar a evitar la oscilación causada por estas fuerzas. Las condiciones para las cuales comienza la inestabilidad han sido calculadas y comparadas con trabajos anteriores. Por otra parte, los resultados del correspondiente problema adjunto y el mapa de sensibilidad se han obtenido por primera vez para el buffet, indicando la región del dominio que sera necesario modificar para crear el mayor cambio en las propiedades del campo fluido. Dado el gran consumo de memoria requerido para los casos 3D, se ha realizado un estudio sobre la reducción del domino con la finalidad de reducirlo a la región donde está localizada la inestabilidad. La eficacia de dicha reducción de dominio ha sido evaluada investigando el cambio en la dimensión de la matriz del Jacobiano, no resultando muy eficiente en términos del consumo de memoria. Dado que el buffet es un problema en general tridimensional, el análisis TriGlobal de una geometría 3D podría considerarse el auténtico reto futuro. Como aproximación al problema, un primer estudio se ha realizado empleando una geometría tridimensional extruida del NACA00f2. El cálculo del flujo 3D y, por primera vez en casos tridimensionales compresibles y turbulentos, el análisis de estabilidad TriGlobal, se han llevado a cabo. La comparación de los resultados obtenidos con los resultados del anterior modelo 2D, ha permitido, primero, verificar la exactitud del cálculo 2D realizado anteriormente y también ha proporcionado una estimación del consumo de memoria requerido para el caso 3D. ABSTRACT Flow unsteadiness is an important problem in aerodynamic applications. In fact, there are several types of unsteady phenomena that are still at the cutting edge of research in the field; separation at high angles of attack and transonic buffet are two important examples. Global Stability Analysis can identify the unstable onset conditions, providing important information about the instability location in the domain and the frequency of the unstable phenomenon. The methodology computes a base flow averaged state based on a finite volume discretization and a solution for a generalized eigenvalue problem corresponding to the perturbed linearized equations. The numerical computation is then performed in three steps: first, a steady solution for the RANS equation is computed; second, the Jacobian matrix that represents the linearized problem is obtained; and finally, the generalized eigenvalue problem is derived and solved with an Arnoldi iterative method. As a first validation test, the technique has been applied on a laminar circular cylinder in order to detect the von Karman vortex shedding onset, comparing the results with experiments and with previous calculations. The main part of the study focusses on turbulent and compressible cases. The prediction of the origin and progression of separated flows at high angles of attack has been studied on the NACA0012 airfoil at subsonic and transonic conditions and for the A310 airfoil in take-off configuration. For all the analyzed geometries, it has been found that gradual separation generates the appearance of one specific unstable mode for angles of attack always greater than the ones related to the maximum lift coefficient. In addition, the adjoint problem has been studied to suggest the location of an external force that results in the largest change to the flow field. From the direct and the adjoint analysis the structural sensitivity map has been computed and the core of the instability has been located. The other important phenomenon analyzed in this work is the transonic buffet. In transonic conditions, the interaction between the shock wave and the boundary layer leads to an oscillation of the shock location and, consequently, of the aerodynamic forces. Knowing the critical operational conditions and its origin can be helpful in preventing such fluctuating forces. The instability onset has then been computed and compared with the literature. Moreover, results of the corresponding adjoint problem and a sensitivity map have been provided for the first time for the buffet problem, indicating the region that must be modified to create the biggest change in flow field properties. Because of the large memory consumption required when a 3D case is approached, a domain reduction study has been carried out with the aim of limiting the domain size to the region where the instability is located. The effectiveness of the domain reduction has been evaluated by investigating the change in the Jacobian matrix size, not being very efficient in terms of memory consumption. Since buffet is a three-dimensional problem, TriGlobal stability analysis can be seen as a future challenge. To approximate the problem, a first study has been carried out on an extruded three-dimensional geometry of the NACA0012 airfoil. The 3D flow computation and the TriGlobal stability analysis have been performed for the first time on a compressible and turbulent 3D case. The results have been compared with a 2D model, confirming that the buffet onset evaluated in the 2D case is well detected. Moreover, the computation has given an indication about the memory consumption for a 3D case.
Application of the Boundary Method to the determination of the properties of the beam cross-sections
Resumo:
Using the 3-D equations of linear elasticity and the asylllptotic expansion methods in terms of powers of the beam cross-section area as small parameter different beam theories can be obtained, according to the last term kept in the expansion. If it is used only the first two terms of the asymptotic expansion the classical beam theories can be recovered without resort to any "a priori" additional hypotheses. Moreover, some small corrections and extensions of the classical beam theories can be found and also there exists the possibility to use the asymptotic general beam theory as a basis procedure for a straightforward derivation of the stiffness matrix and the equivalent nodal forces of the beam. In order to obtain the above results a set of functions and constants only dependent on the cross-section of the beam it has to be computed them as solutions of different 2-D laplacian boundary value problems over the beam cross section domain. In this paper two main numerical procedures to solve these boundary value pf'oblems have been discussed, namely the Boundary Element Method (BEM) and the Finite Element Method (FEM). Results for some regular and geometrically simple cross-sections are presented and compared with ones computed analytically. Extensions to other arbitrary cross-sections are illustrated.
Resumo:
O trabalho aborda o estudo e o desenvolvimento de um interferômetro sensor de alta tensão, baseado em célula Pockels (modulador eletro-óptico) na topologia reflexiva (\"double pass\") e que é parte integrante de um Transformador de Potencial Óptico (TPO), que utiliza sistema interferométrico de luz branca (WLI-White Light Interferometry), que está sendo desenvolvido pelo grupo do Laboratório de Sensores Ópticos (LSO) do PEA-EPUSP, e é capaz de medir diretamente tensões presentes em sistema elétrico de potência (SEP) classe 69kVRMS. Para desenvolver o tema proposto foi feita uma revisão da literatura baseada em livros, artigos e teses para identificar topologias em moduladores eletro-ópticos transmissiva (\"single pass\") e reflexiva (\"double pass\") para definir o tipo de modulador mais adequado para a aplicação em questão. A partir dos estudos e implementações realizadas, verificou-se um enorme potencial para o desenvolvimento e aplicação da topologia \"double pass\" no sensor interferométrico da célula de alta tensão do TPO. A topologia mostrou-se vantajosa em relação aos protótipos dos TPOs desenvolvidos anteriormente, a partir de características tais como: a facilidade de recurso de alinhamento do feixe de luz, construção e reprodução relacionados ao cristal eletro-óptico, diminuição do número de componentes ópticos volumétricos e aumento da rigidez dielétrica da célula sensora. Simulações computacionais foram realizadas mediante a aplicação do método dos elementos finitos (MEF) que contribuíram para o auxílio do projeto da célula sensora, particularmente, para estimativa do valor da voltagem de meia onda, V?, parâmetro importante para o projeto do TPO. Um protótipo do TPO com célula sensora de alta tensão reflexiva foi implementado e testado no laboratório de alta tensão do IEEUSP a partir de ensaios com tensões nominais de 69kVrms a 60Hz e máxima de 140kVrms a 60 Hz. Como resultado deste trabalho, amplia-se o conhecimento e domínio das técnicas de construção de interferômetros sensores de alta tensão na topologia reflexiva aplicadas a TPOs.
Resumo:
Thermal buckling behavior of automotive clutch and brake discs is studied by making the use of finite element method. It is found that the temperature distribution along the radius and the thickness affects the critical buckling load considerably. The results indicate that a monotonic temperature profile leads to a coning mode with the highest temperature located at the inner radius. Whereas a temperature profile with the maximum temperature located in the middle leads to a dominant non-axisymmetric buckling mode, which results in a much higher buckling temperature. A periodic variation of temperature cannot lead to buckling. The temperature along the thickness can be simplified by the mean temperature method in the single material model. The thermal buckling analysis of friction discs with friction material layer, cone angle geometry and fixed teeth boundary conditions are also studied in detail. The angular geometry and the fixed teeth can improve the buckling temperature significantly. Young’s Modulus has no effect when single material is applied in the free or restricted conditions. Several equations are derived to validate the result. Young’s modulus ratio is a useful factor when the clutch has several material layers. The research findings from this paper are useful for automotive clutch and brake discs design against structural instability induced by thermal buckling.
Resumo:
This paper shows the analysis results obtained from more than 200 finite element method (FEM) models used to calculate the settlement of a foundation resting on two soils of differing deformability. The analysis considers such different parameters as the foundation geometry, the percentage of each soil in contact with the foundation base and the ratio of the soils’ elastic moduli. From the described analysis, it is concluded that the maximum settlement of the foundation, calculated by assuming that the foundation is completely resting on the most deformable soil, can be correlated with the settlement calculated by FEM models through a correction coefficient named “settlement reduction factor” (α). As a consequence, a novel expression is proposed for calculating the real settlement of a foundation resting on two soils of different deformability with maximum errors lower than 1.57%, as demonstrated by the statistical analysis carried out. A guide for the application of the proposed simple method is also explained in the paper. Finally, the proposed methodology has been validated using settlement data from an instrumented foundation, indicating that this is a simple, reliable and quick method which allows the computation of the maximum elastic settlement of a raft foundation, evaluates its suitability and optimises its selection process.
Resumo:
Numerical modelling methodologies are important by their application to engineering and scientific problems, because there are processes where analytical mathematical expressions cannot be obtained to model them. When the only available information is a set of experimental values for the variables that determine the state of the system, the modelling problem is equivalent to determining the hyper-surface that best fits the data. This paper presents a methodology based on the Galerkin formulation of the finite elements method to obtain representations of relationships that are defined a priori, between a set of variables: y = z(x1, x2,...., xd). These representations are generated from the values of the variables in the experimental data. The approximation, piecewise, is an element of a Sobolev space and has derivatives defined in a general sense into this space. The using of this approach results in the need of inverting a linear system with a structure that allows a fast solver algorithm. The algorithm can be used in a variety of fields, being a multidisciplinary tool. The validity of the methodology is studied considering two real applications: a problem in hydrodynamics and a problem of engineering related to fluids, heat and transport in an energy generation plant. Also a test of the predictive capacity of the methodology is performed using a cross-validation method.
Resumo:
Federal Highway Administration, Office of Safety and Traffic Operations Research Development, McLean, Va.
Resumo:
Transportation Department, Washington, D.C.
Resumo:
Federal Highway Administration, Office of Safety and Traffic Operations Research Development, McLean, Va.
Resumo:
"UILU-ENG 80 1712."
Resumo:
"UILU-ENG 78 1738."
Resumo:
"This research was supported by the Advanced Research Projects Agency of the Department of Defense and was monitored by the Bureau of Mines ..."