883 resultados para Carpenter, Liz
Resumo:
Reports of substantial evidence for genetic linkage of schizophrenia to chromosome 1q were evaluated by genotyping 16 DNA markers across 107 centimorgans of this chromosome in a multicenter sample of 779 informative schizophrenia pedigrees. No significant evidence was observed for such linkage, nor for heterogeneity in allele sharing among the eight individual samples. Separate analyses of European-origin families, recessive models of inheritance, and families with larger numbers of affected cases also failed to produce significant evidence for linkage. If schizophrenia susceptibility genes are present on chromosome 1q, their population-wide genetic effects are likely to be small.
Resumo:
Shallow marine chitons (Mollusca:Polyplacophora:Chitonida) are widespread and well described from established morphoanatomical characters, yet key aspects of polyplacophoran phylogeny have remained unresolved. Several species, including Hemiarthrum setulosum Carpenter in Dall, 1876, and especially the rare and enigmatic Choriplax grayi (Adams & Angas, 1864), defy systematic placement. Choriplax is known from only a handful of specimens and its morphology is a mosaic of key taxonomic features from two different clades. Here, new molecular evidence provides robust support for its correct association with a third different clade: Choriplax is placed in the superfamily Mopalioidea. Hemiarthrum is included in Cryptoplacoidea, as predicted from morphological evidence. Our multigene analysis of standard nuclear and mitochondrial markers demonstrates that the topology of the order Chitonida is divided into four clades, which have also been recovered in previous studies: Mopalioidea is sister to Cryptoplacoidea, forming a clade Acanthochitonina. The family Callochitonidae is sister to Acanthochitonina. Chitonoidea is resolved as the earliest diverging group within Chitonida. Consideration of this unexpected result for Choriplax and our well-supported phylogeny has revealed differing patterns of shell reduction separating the two superfamilies within Acanthochitonina. As in many molluscs, shell reduction as well as the de novo development of key shell features has occurred using different mechanisms, in multiple lineages of chitons.
Resumo:
Recently, lead iron tantalate/lead zirconium titanate (PZTFT) was demonstrated to possess large, but unreliable, magnetoelectric coupling at room temperature. Such large coupling would be desirable for device applications but reproducibility would also be critical. To better understand the coupling, the properties of all 3 ferroic order parameters, elastic, electric, and magnetic, believed to be present in the material across a range of temperatures, are investigated. In high temperature elastic data, an anomaly is observed at the orthorhombic mm2 to tetragonal 4mm transition, Tot = 475 K, and a softening trend is observed as the temperature is increased toward 1300 K, where the material is known to become cubic. Thermal degradation makes it impos- sible to measure elastic behavior up to this temperature, however. In the low temperature region, there are elastic anomalies near ≈40 K and in the range 160–245 K. The former is interpreted as being due to a magnetic ordering transition and the latter is interpreted as a hysteretic regime of mixed rhom- bohedral and orthorhombic structures. Electrical and magnetic data collected below room temperature show anomalies at remarkably similar temperature ranges to the elastic data. These observations are used to suggest that the three order parameters in PZTFT are strongly coupled.
Resumo:
Background: Clinical Commissioning Groups (CCGs) are mandated to use research evidence effectively to ensure optimum use of resources by the National Health Service (NHS), both in accelerating innovation and in stopping the use of less effective practices and models of service delivery. We intend to evaluate whether access to a demand-led evidence service improves uptake and use of research evidence by NHS commissioners compared with less intensive and less targeted alternatives.
Methods/design: This is a controlled before and after study involving CCGs in the North of England. Participating CCGs will receive one of three interventions to support the use of research evidence in their decision-making:1) consulting plus responsive push of tailored evidence; 2) consulting plus an unsolicited push of non-tailored evidence; or 3) standard service unsolicited push of non-tailored evidence. Our primary outcome will be changed at 12 months from baseline of a CCGs ability to acquire, assess, adapt and apply research evidence to support decision-making. Secondary outcomes will measure individual clinical leads and managers’ intentions to use research evidence in decision making. Documentary evidence of the use of the outputs of the service will be sought. A process evaluation will evaluate the nature and success of the interactions both within the sites and between commissioners and researchers delivering the service.
Discussion: The proposed research will generate new knowledge of direct relevance and value to the NHS. The findings will help to clarify which elements of the service are of value in promoting the use of research evidence.Those involved in NHS commissioning will be able to use the results to inform how best to build the infrastructure they need to acquire, assess, adapt and apply research evidence to support decision-making and to fulfil their statutory duties under the Health and Social Care Act.
Resumo:
This paper explores the production and post-production techniques and tensions in designing sound for film. Considering the films of Lucrecia Martel and Sofia Coppola, amongst others, Greene and Yang will discuss how the soundtrack takes on a primary role in these films and becomes a medium for symbolism, reflection, characterisation, as well as storytelling. There will be a close examination of the processes involved in creating character-orientated soundscapes. These processes are sensitive to the effects sound has on an audience. Exploring how these filmmakers (with their sound teams) utilise the listening experience, including attention to point of audition and sound perception, this paper will critically unpick how such creative decisions are arrived at during various stages of the production process. Outlining the use of diegetic and non-diegetic sound and the potential musicality of sound effect design, issues of reverberation, noise and intent are discussed to highlight the sonic framing of these creative teams. Greene will approach these soundtracks from a production/post-production perspective, while Yang will explore the composer’s/designer’s ear.
Resumo:
commissioned by Ballet Rambert for 60th Anniversary season, choreographer Mary Evelyn, designer Liz Emmanuel. World premiere: Theatre Royal York 03/06/86
Resumo:
Predatory Bdellovibrio bacteriovorus bacteria are remarkable in that they attach to, penetrate and digest other Gram-negative bacteria, living and replicating within them until all resources are exhausted, when they escape the prey ghost to invade fresh prey. Remarkable remodeling of both predator and prey cell occurs during this process to allow the Bdellovibrio to exploit the intracellular niche they have worked so hard to enter, keeping the prey "bdelloplast" intact until the end of predatory growth. If one views motile non-predatory bacteria in a light microscope, one is immediately struck by how rare it is for bacteria to collide. This highlights how the cell surface of Bdellovibrio must be specialized and adapted to allow productive collisions and further to allow entry into the prey periplasm and subsequent secretion of hydrolytic enzymes to digest it. Bdellovibrio can, however, also be made to grow artificially without prey; thus, they have a large genome containing both predatory genes and genes for saprophytic heterotrophic growth. Thus, the membrane and outer surface layers are a patchwork of proteins encompassing not only those that have a sole purpose in heterotrophic growth but also many more that are specialized or employed to attach to, enter, remodel, kill and ultimately digest prey cells. There is much that is as yet not understood, but molecular genetic and post-genomic approaches to microbial physiology have enhanced the pioneering biochemical work of four decades ago in characterizing some of the key events and surface protein requirements for prey attack.